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Intrsltustian

It vas realized as late as in 1969 by N.L. A11ing and N. Greenleaf
([:]) tirat the analytic counterpart of a real algebraic curve is a pos-
sibly non-orientabre surface vith bounclary and with a dianalybic struc-
ture. That observation notivates the study of these surfaces, knovn as

Klein surfaces.

A real algebraie curve C is a complex curve C"

lution o of C". This complex curve correspond.s to a

,rritfr an invo-
compact Riemann

surface X"r and o induees an antianalytic involution o of Xc.

Our Klein surface X corresponding to C is obtained as the quotient
X = X./o, This representation for a Kl-ein surface has been suceessfully
usecl to transform results about Riemann surfaces into Klein surfaces ( [2],
[\], etc. ) .

In this paper ne are i-nterestett in the problen of nocluli of Klein
surfaces. Using the representätion X = X"/o one can transforlr this
problem into symnetric Riemann surfaces (see [9] ancl the references given
there). In that way one can study Teichmiiller spaces of Klein surfaces.
The author believes, hovever, that it is useful, or at least instructive,
to vork d.irectly on Kl-ein surfaces.

As regards the analybic definition of the Teichniiller space T(X)

of a Klein surface X, ve have two possibilities rrhich 1ead. to different
results. lIhi1e these tvo ttefinitions are analytically equally weII
motivatecl it seems to be natural, from the geometric point of viev, to
define the Teichniiller space T(C) of a real curve C as the subspace

of T(C^) whose points a,re representecl by real curves tthomeomorphictt'c
to C. This leads us to consider a generalization of reduced Teichmiiller
spaces. We vi1l shov in the present paper hov Bersr method.s (see [1],
[7], ana Itt]) ean be applied to such Teichmiiller sps.ces. While prepar-

ing thi.s research the author has found O. Lehtots lectures ([tt]) espe-

cia11y useful.
Tn Chapter 1 rre recal1 some d.efinitions about Klein surfaces fo1-
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loving A11ing and Greenleaf ( tl+] ). We also define quasiconformal map-

pings of K1ein surfaees. The novelty here is that a quasiconformal map-

ping can be, in some sense, sense-reversing.

In Chapters 2 and 3 ve recall- some ve1l-knor,rn theorems about the

unifornization of iClein surfaces (see It3]) ana, folloving sers (t5l),
obtain a version of simultaneous uniformization of compact Klein sur-
faces.

In Chapter )+ we consid.er liftings of mappings antl their homotopi.es.

We obtain a topological- result (Lemma \.3) which a11ovs us to sirnplif!
the definition of the reduced Teichmiiller space of a surface vith bound-

arx (ef. t tol ).
In Chapter ! rre d.efine the Teichmiiller space T(Z) of a possibly

non-orientable compact tvo-manifold Z. The d.efinition is analogous

to those given in [9] and [12]. fhen, folloving Bers ([t], [f], Itt]),
ve embed the spaee T(Z) into a suitable space of quadratic clifferen-
tials. Using this embedding ve prove that T(Z) is homeomorphic to
a simply connectetl open subd.omain of a Euclitiean space. If Z is non-

orientable or has a non-empty boundary, the real dimension of T(Z) is
3e(z) - 3; otherwise it is 6e(z) - e. Here eO) denotes the alge-
braic genus of Z.

Tn the encl ve prove, relyi.ng on classical- resul-ts, that T(Z) has

a natural real analytic structure such that the above embed.ding is a

real anal;rtic napping of T(Z) into a real Banach space.

'1 . ictsin surfaces

1.1. In this paper rre are dealing with a topologieal tvo-manifold
Z which may have boundary; the boundary of Z is d.enoted by AZ. We

call an atlas U = {(U'zr)li.e r} of Z dianalytic if the coordinate

transition fuactions ", " "11 belong to the class c2 and satisfy
either a(2. o rjl)tai=o å. ä(2. o rjl)/ar=o inaneighborhoocl
of every interior point of z.(u. n U.) in the complex plane 0.

For notational convenience we sha11 assume here that eaeh set

z.(Ur) is an open subset of the cfosed upper half-p1ane if = t, e Ol

In z ? 0].
Two d.ianalytic atlases fr ana i .r" called equivalent if U U V
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is a dianalytic atlas of Z; an equivalence class X of clianalytic
atlases of Z is calIed a clianalytic structure of Z. A topological
tvo-manifold. Z witfr a d.ianalytic structure X is called-

faee. The correct notation (Z rX) for a Klein surface is

a Klein sur-

usually

abbreviated to X.

Since the coordinate transition firnctions of a tlianalytic atlas

can be sense-reversing, a Klein surface neecl not be orientable. For

exa^mple, the real projective plane is a Klein surface.

On the other hancl, every Riemann surface has a natural dianalytic
structurel Klein surfaces arising from Riemann surfaces in this manner

are cafled elassical. A Klein surface is non-classical if it has bound-

ary or is non-orientable.
Let f: X + Y be a continuous mapping of Klein surfaces vhich

maps äx into AY. Let r: 0 -+ 0, x * iy * * * ilyl, be the folcling
map. We call f a morBhisn of Klein surfaces if for each p € X and

for a1t 1oca1 variables z and w about p and f(p), respectively,

ve can find. a holomorphic function F such that v o f = r o F o z holcls

in some neighborhood. of p.

homeomorphi sm.

A morphism is an i=omogphlsm if it is a

1.2. We riI1 transform results about Riemann surfaces into Klein

surfaces using two kincls of coverings of Klein surfaces rrith Riemann

surfaces.

The orienting clouble of a Klein surface X is a triple (x^,n^ro^)

satisfying the folloving conclitions :

(i) X- is a Rienann surface, possibly vith boundary' or a disjoint
o

union of trro of them.

(ii1 The norphisn no: xo '+ x is a two-to-one covering map vhich is
locally a homeomorphism.

(iii) oot xo * xo is an antianalytic involution sati-sfying ,o =

li oo.oo
By an extrrlicit construction rre can shov that every Klein surfaee

x has an orienting double Xo nhich will be connected if and only if
X is non-orientable. Xo has a non-empty boundary if and only if X

has. AX^ consists, in faet, of tvo parts vhich are mappecl onto each
o

other by oo and. rrhich are mapped homeomorphically onto aX by no.

The complex d.ouble of a Klein surface X is a triple (x"rn,o)

satisfying the follorring conditions:
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(i) *" is a Riemann surface or a d.isjoint union of tvo of them.
(ii) Fhe morphism n: X" -+ X is a d.ouble covering map which is trio-
to-one and 1ocal1y homeomorphic outside of n-l(aX) ancl one-to-one in
n '(äx).
(iii) o: X" + X" is an antianalytic involution satisfling r = 1T o o.

If äX = Qt then the orienting doubfe is also the complex double.
If äx I 0, ttren äxo consists of tvo symmetric parts both homeomorphic
to AX. Gluing them together ve obtair X". (r and o are then the
nappings of X" defined by the mappings no and. oo of *o.) Hence

every Klein surface has arso a complex d.oubl-e. One can shor,r that it is
unique up to an isomorphism (U+], proposition 1.6,2).

A Riemann surface admitting antianalytic involutions is ca11ed

symnetricl an antianatytic involution of a strrrmetric Riemann surface is
ca11ed a slrmmetry. The complex double x" (the orienting double ,o)
of a Klein surface x is a symitetrie Rienann surface with symnetry o

(oo). From (i.i) and (iii) it follovs that x = x"/o (x = xoloo).
conversely, given a slmmetric Riemann surface s rithout boundary,

if A is a symmetry on S, then S/A is a l0ein surface vhose complex
double is S.

,;r. Consider a collection f6 = {fr} of functions f.: Ui * ä,
vhere 0 denotes the Rienann sphere, clefinect on charts of the dianalyti.e
atl-as ö = {(Ui,z.)li e r} of a Klein surface x. We recalt that ru
is a meromorphic function relative to il if tfre folloving ho1cls:
(i) Each function f. o ,11 is meromorphic, and f.(ax n Ui) is
a subset of the extended real line.
(ii) Let p€uinrj.tn".,.t ,ior:'
f;(p) = rr(n); other:r^rise f:s-) = f=(p).r- J - I J-

is holomorphic at ,, (n),

If fU and fi are meromorphic functions relative to fr ana i,
respectively, then they are equal if 16 u r; is a meromorphic function
relative to u u v. An equivalence crass f of meromorphic functions
relati-ve to itianalytic atlases of x is a meromorphic function on x.

Meromorphie functions on X form, in an obvious vay, a field
tu(X). ft contains 0 as a subfield if and only if X is classical.
If X is not classical, then tU(X) is a fielct extension of JR, the
fieId. of real numbers. If X is eompact, the transcendence d.egree

of the field extension M(X)/h is 1.
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Let g: X -) Y be a morphi.sm of Klein surfaces, and let fr =

{(u.,zr)li e r} ancl t = {(V'v,)lj e .r} be ctianalytic atlases of x
and Y such that each chart of U is connected and each A(Ui ) is
contained in some V.. Consicler a meromorphic function f € M(y) rep-
resented by f; = {fr}. For the moment, 1et o alenote the napping of
0 onto itself vhich takes a complex number to its complex conjugate
and - to o.

Choose an (u'zr) € fr, and 1et (v'vr) e i be such that
g(U.: ) c V:. Since v.,(Vr) is a subset of the closetl upper half-p1ane,lJJJ
ve carl continue, by the Schvarz reflection principle, the meromorphic

function f . o *11 to a meromorphic funetion fi;\;l definecl in theJJ'JJ
set v.,(V.,) U o(w.(V..)). Let nov 0 be the holomorphic function satisfy-JJJJ
i.rg *.j o e = K_o 0 o z. in U.. (Eventually ve can fincl such an O.)

Denote fi;-w:r o 0 o z by A*(f).. The family ,l(glt = {,p*(f)il
i € I] is then a meromorphic function relative to U. Let A*(f) de-

note its equivalence class. After all these clefinitions we obtain
a ve1l ctefindcl homomorphism tp*: M(y) * U(x), f . g*(t).

the

M(x

If A is not constant, g* is a monomorphisn. If (X"rnro) is
complex double of X, then n*(M(X)) equals to the subfield of

e 
) left fixed. by o* (t)+l , Theorem 1 .6.)+ ) .

1.)+. Let U = {(u.,zi)li € r} be a dianatytic
+ 0 , we d.efine the function ti j r Ui n Uj -> CI

= (åtr. oz.1 ) +
dz 1 J

orJl)) o ,i = (* (riorJl)) ori,

u. n
1

U.
J

atlas of X. If
by

T.
1J

At
-\z' i

^J-dz

and.

(l).:
1

(i)

(ii )
-1Z. O Z.1J

recall that a family ,0
A

u- + CI is a meromo@-
1

(ax n Ui) clR U {-} for each i € I.

is horomorphic at zr(n), then o5(n) = r1(p)Tlr(n);

otherwise ,GI = ,1(r)r1;(r).
Meromorphic clifferentials ,U and ,f relative to atlases fr and

i, respectively, are callect equal if rfr U s is a meromorphic differ-

= {r., li € I} of meromorphic functions
1'

d.if ferential relative to U if :

(l).
1

If

ential relative to U U i. Equivalence classes
f erential-s relative to d ianalytic atlases of X

tll of meromorphic d.if-
are ca1led- meromorphic

D(X) which is a eomplexd.ifferentials on X. They form a vector space
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vector space if X is classical and real otherwise.

If f € M(X)o then taking the derivates 1oca11y ve can define
the differential d{ of ! rrhich turns out to be a meromorphic dif-
ferential. If g. is not constant, then dq I 0.

The product !o of a meromorphie function f and a meromorphic

clifferential o is 1ocaI1y velI-defined. Checking the transformation
rul-e lre see that lrrr is, in fact, a meromorphic differential on X.

And if f € M(X) is not constant, then every ur € D(X) can be vritten
in the form

(r.r) tll = ådI,

where g- € M(X ) i. r uniquely def ined by o).

sional vector spaee over U(X).

Hence n(X) is a one-d,imen-

A non-constant morphism Q: X + Y of I0ein surfaces incluces a

monomorphism ö*: M(y) + U(X). Using (t.t) ve can define the mapping

O*: D(Y) * O(x) induced by g setting ö*(eag) = ö*(g)aÖ*(!), vhere

the O*rs on the right trand. sicle denote the mapping O*: U(y) * U(X).
Ihe definition cioes not depend. on the choice of E. It is clear that
the napping O* is a u(y)-rinear injection of o(v) into o(x).

Let (X"rnro) be the complex double of X. Checking the d.efi-
niti.ons it is easy to see that "*1O(X)) equals to the subset of O(X.)

left fixetl by o*. (Hence the differentials on X can be characterized
as the clifferentials of X^ vhich take conjugate ttvaluestt at symmetric

points of *". )

Adifferentiat t,r€n(X) is lglomorphic if it is defined. by a

family of holomorphic functions. Holomorphic tlifferentials form a sub-

space Oo(X) of O(X) vhich is finite dimensional if X is compact.

(fhis follovs inmediately from the corresponding resul-t about Riemann

surfaces and the above remark. )

1 . , . Cons i d.er again the atlas U

will say that a family oö = {", li € Ii
A

= {(u.,2.)li € r} of x. we

of meromorphic functions
differential relative to 0 ifcx,. I U, -> CI is a mery-rphi-e quadfatic

11
the following hold-s :

(i) o. (ax n u- ) cn U {-} for each i € I.
t l-n

(ii) rf ,. o ,11 is holomorphic at ,r(l), trr"r, oj(p) = o. (r)trr(n)2;

othervise ;.läI = o.(o)T..(o)2 for all o € U. 0 U..
J'-' 1'-' 1J ^' - 1 J
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In the set of meromorphic quadratic clifferential-s relative to di-
analytie atlases of X we introduce an equivalence relation in the

usual vaY: 5 antl oi 
,"r"_.qrivalent 

if o6 U cr; is a quadratic dif-
ferential relative to U U V. Equi-valence classes of meromorphic quad-

ratic d.ifferentials relative to atlases of X are callecl meromorphic

quaclratie clifferentials on x. They form a vector space o2(x). If
a meromorphic quadratic differential is tiefined by a family of holo-

morphic fimctions, it is caflecl holomorphic. The space O!(X)^ of
holomorphic quaclratic d.ifferentials on X is a subspaee of Dt(x).

D|(x) ancl o2(x) are complex vector spaces if x is crassical,
otherwise real. If X is compact, D3(x) is finite climensional.

Let o6 = {orli e r} e o and .fr =-{.ili e r} e t be meromorphic

(holonorphic) differentials relative to U. The family ,fr.ö = {r,rttt}
is then a meromorphic (holonorphic) quadratie clifferential relative to
fr; its equivalence class or is a meromorphic (holomorphic) quactratic

clifferential on X vhich we cal-l the product of o and r. The defi-
nition of or does not clepencl on the choice of the dianalytic atlas U.

Conversely, if cr5= {oilierie" is aquadraticctifferential
relative to ö and if ur6 = {rrrrli e r} e ur is a non-constant differ-
ential relative to li, th.r, the farily {or/rrrrli € I} is a meromorphic

clifferential relative to iT; ctenote its equivalence class by o/u, Then

it is clear that for all a g o2(x) and for all non-zero ur € D(x) we

can write

11

(t.z) c[ = T(,0r

vhere 'r = o/r,r € D(x) is uniquely cteterminecl by 0r.

Let Q: X + Y be a non-constant morphism. Tn 1.\ ve have seen

that it defines a linear injection ö*: D(y) + o(x). Using (t.e) ve

can tlefine the corresponding mapping O*: n2(y) * o2(x) setting

0*(o) = O*(r)O*(o), r,rhere the 4*ts on the right hand side clenote the

mapping 0*: O(y) -+ O(X). Then O* is a vell-defined linear injection
of o2(v) into o2(x) vhich maps D2(Y) into D2(x). 

^rf (x"rn,o) is the complex d.oubfe of x, tien D2(x) and. D:(x)

are, as vector spaces, isomorphic to n*1o21x)) and n*(o2(x)),
respectively. And i.t follovs from all the given definitions that
quad.ratic differentials on X can be characterized as quadratic differ-
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enti-a1s on X" taking conjugate ttvaluesil at synmslyic points.
1,6. In this section we assume that X is a compact Klein sur-

face. Then the vector space of holonorphic clifferentials on x, Do(x),
is finite dimensional. We recal1 that if X is classical, Do(X) is
a O-veetor space, being otherwise alR-vector space, and. clefine the
algebraic genus of X, g(X), bf

dimn oo(x)

uir5 oo (x )

if

if 1S

elassical

non-classical.

r_s

e(x) =

L e mm a 1.1. If x is a cor4oaet non-classieal Xlein surface,
then g(x") = g(x).

Proof. Let å e oo(x"). The differentials ir = (, + o*(;))/2
and i, = (ä - o*(;))/2i satisfy å. = o*(äj), i = i,2, and henee

define alifferentials o. € Do(X) for vhich ij = ,*(rj), j = 1,2. It
foll-ows that any i e no(X") ca., be vritten in tfr. foi, i = r*(t., ) +

in*(re), vhere t. € Oo(X), i = 1,2. Tf norr the differentials ,1,.2,
... ,on form a basis for the rear vector spaee oo(x), then the differ-
entials n*(r,r., )rn*(r2)r...rn*(rrr) forn a basis for the complex veetor
space Do(xc). Hence aiA oo(x) = dimn oo(x"). The lemma is proved.

For compact Klein surfaces X ve define the topological genus

p(x) as fo11orrs. rf x is classicat, p(X) denotes the number of tori
vhich connectetl together give x. rf x is not orientable and äx = ö,
then p(X) is the number of real projective planes needed to bui1d. X.
If ax I 0, then the Schottky clouble, Xr, of X, vhich is obtained by
gluing tvo copies of x together along the bound.ary, is a Klein sur-
faee without boundary. And ve define p(x) = f(Xa).

Tn addition to the topological genus also the Euler characteristic
x(x) of x is used in classification of compact topological surfaces.
For clarity ve give the relations between g: ! and 1 in the folloving
table ( [2], Theorem 1.1 ).

ax= 0
t<(x) = o

ax # ö
t<(x) = o

ax=0
t<(x) = 1

axi0
t<(x) = 1

p(x)

x(x)

ll-

s( x)

2 2s(x)
s(x)

1 - s(x)
e(x) + 1

1 - s(x;

2g(x)

1 - s(x)
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Here k(x) tienotes the index of orientabitity being 0 if X is orient-
able and 1 otherwise.

R e m a r k. By definition, the Euler characteristic ancl the topo-

logieal genus of a Kfein surface clepencl only on the underlying topologi-
caI space, ,,ihiIe the algebraic genus depencls, a priori, also on the d'i-

analytic structure. The above table shovs, hovever, that also g(X) is
d.efined. by the topological type of X. Since any compact topological

tvo-nanifofd carries a dianalytic structure, ve can, by this observation,

spealr of its algebraie genus.

1.7 . Tn the classical case ve knov that for compact Klein surfaces

x aimn r!t") = 3e(x) - S. If X is not classical , then r,ie can employ

the reasoning of the proof of Lenma 1.1 once more to obtain the follow-
ing:

T h e o r e m 1. 1. Let x be a compact non-elassical Klein sur-

face. rhen aiq oltxl = :e(x) - s.

1.8. Let 0 = {(ul,z.)li e r} be again a dianalytic atlas of
a Klein surface X. Let the functions *ij be clefined as in 1.l+. We

eonsiderafa.rnily ufr={uille fl of functions p.:Ui*0 subject

to the following conditions:
(r.:)
(i) Each function ui o zl1 is measurable l,rith respect to the Lebesgue

measure in 0.
-I(ii) Assune that U. n Uj I ö. If ,i o ,i' is holomorphie at ,j(r),

then u;(r) = ui(n)ilTnT/t.r(n); otherrrise Bn = ur(r)[J-h=f/r.r(n)
forall p€U. flU..

fhe family ufr is caIled a (-1,1)-differential relative to U.

If it satisfies

where ll ll* d.enotes the L--norm, it is a

tiv.e tg fr. The Beltrami d.if ferentials ufr and

and. t, respectively, are called. equivalent if
d.ifferential relative to U U i. An equivalence

ferentials relative to d.ianalytic atlases of X

ferential on

4ifferential lglg-
uf relative to U

ufr U s is a Beltrami

class of Beltrami d.if-

is called. a Beltrami dif-
x.
X + Y be a homeomorphism of Klein surfaces.

Beltrami

Let f: We call
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t<-qua:_fS94[9rmaL, for a finite K , 1, if for each p € X and for each

local variable z about p ve carl choose a local variable v about

f(p) such that the mapping v o f o ,-1 is K-quasiconformal near z(p);
f is quasiconformal if it is K-quasiconformal for some finite K. If
f is quasiconformal, then the smallest number K for vhich f is K-
quasiconformal is called the maxi.mal dilatation of f.

By the theory of plane quasiconfornal nappings it is clear that
a 1-quasiconforural napping is an isomorphism of Kl-ein surfaces, and if
f., : X., -+ X, and f2: X2 + X3 are K.,- and Kr-euasiconfornal mappings,
respeetively, then f2 o ft is K.,Kr-euasiconformal_.

Let f: x + Y be quasiconformal, and let U = {(U. rzr) li
be a d.ianalytic atlas of X. Assume that each set f (U, ) , i €

contained in some dianalytic chart of Y. Then for each i € I
choose a local variable *i on f (U. ) such that *i o f o "r'
quasiconformal. After that choice the functions

€ r)
I rc+, IlJ

we can

is

a(w, o r o "rt)/aiU. ='1
ä(w, o r o ";t)/az

crearry form a Beltrami d.ifferential relative to
erass u is eaIled the Beltrami differential of
a u-quasiconformal mapping of X.

Conversely, given a Be1trani clifferential p on X, ve ean

solve the d"ifferential equation AtlA; = udf/Dz on every chart (U,z).
Let f I and f 2 be homeomorphic solutions correspontting to (U., ,2., )

and (UZ,rz), respectively. If Ul n U2 I 4, then a forrnJ.a computation

shorrs that the homeomorphism t, o t 11 is either analytic or antiana-
lytic d.epending on ,, o ,\'. rt foltows that fru = {(u,r)} is a d.i-
analytic atlas for the topological- surface X. X together with the
correspond.ing clianalytic structure is a Klein surface vhich we d.enote

by xu.

A mapping f: X + Y, p-quasiconformal on X, is an isomorphism of
xu onto Y, and the identity mapping X -+ xr is a p-quasiconformal
mapping of X. Henee ve have the following result.

T h e o r e m 1.2. Let v be a Belty,qni differential on a Klein
surface x. There esist y-quasiconfonnal mappings of x. If f1 and

u;
1,

its equivalence

and f is called
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fz are both v-quasiconformal, then

+ tzT) such that fz= g o f1.
1.g. Consid.er a d.isk Dt , DJ

1'

there erists an isomorphism g: r., (x)

cD=

Let fr: D->D be a homeo-irrg homeomorphism f of D onto itself.
morphism wittr the followirrg properties:
(i) f' = f in D Dr.

(il) r' is locally quasiconformal in Dr .

( iil ) ff f is quasiconformal in a neighborhood- of a point of

then ft is also quasiconformal in that neighborhood..

( ir, ) f f f is quasiconformal in a neighborhood. of äD' , then

is quasiconformal in that neighborhood..

äDt,

fr

It is not difficult to see that for any f there exists an fr
(vhich is not uniquely cletermined) with the above properties (see [1lr],
Lenna 1.1 ).

It is clear that i.n the above tre can replace the sets D and Dr

by the sets D n H and Dr n H antl stifl finct an fr r.iith the prop-

erties (i)-(iv). Recall that H denotes the upper half-p1ane.
Using this auxiliary mapping ve shall show that any homeomorphism

g: X + Y of compact Kfein surfaces is honotopic to a quasiconformal

mapping.

Consider a dianalytic atlas {(u.,,2., ),(ur,zr)n...,(Urr,zrr)} of x

nith the folloving properties:
( i ) Each z. (U, ) is either D or o n n.

(ii) Each s(Ur) is containecl in a dianalytic chart (v'vr) of Y

such that vr(e(ur)) is eittrer D or o n H.

(iii) Each napping ,r. o g o ,il is sense-preserving. 
.

Let Dt, il c D, be such a disk that the sets ,r'(n') o.
,r1{o' n lf) form a covering of x. Having done al-1 this d.efine the

sequence (gO rB1 ,. . . ,Brr) as follovs. Set BO = B. If gi-t is d.e-

fined-, then define Ci to be Bi-t outside of Uri in Ui first

set f = ri o B.-., o ,11 ancl then define gi as wl1 o f' o 2., vhere

fr is the auxiliary function defined by f and having the properties
(i)-(iv).

By construction each gi is homotopic to 8i-., r vhenee 8r, is
homotopic to g0 = B. gn is al-so 1ocal1y quasiconformal- in X. Since

X is compact, g is quasiconformal. Hence ve have proved the fo11ov-
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ing result.
L e m m a 1.2. The homotopy elass of a homeomor?hism of eornpact

Klein surfaees contains quasieonfornal mappings.

2. Uniformlzatlon pf

Let g: X + X be the universal covering surface (in tne topologi_
cal sense) of a Krein surface x. we can endov i vith a ctianalSrtic
structure requiring Q: i * x to be a morphism of Klein surfaces. Then
the group G of covering transformations turns out to be a subgroup of
the group of automorphisms of the Klein surface i. Iftrorring the classi-
cal results concerning Riemann surfaces it is not difficurt to stutty G

and i, since i is, in fact, the universar- covering.surface of the
orienting double Xo of X.

ln our applicationsn hovever, another covering of x plays a fun-
damental ro1e. fhis covering we obtain using the complex double x.
of X.

2.1. Let us start recar-ling some classical results about the
uniformization of Riemann surfaces r,rithout bounclary.

By the universal covering surface of a Riemann surface s ve mean

a pair (3,0) satisfying the folloving eonditions, where I d.enotes
the unit interval:
(i) 3 i" . simply connected" Riemann surface, and ö: 3 * S is a lo-
ca1ly conformal mapping.
(ii) ff y: I -+ S is a path ana if O(io) = y(O), then there exists

turapath y:I+S vith y(O)=p^ and Ooi=y.-o
The path i i" (ii) is called the lifting of y from the point

;.^o
A sirrply connected. Ri.emann surface rtrithout boundary is conformally

equivalent vith the Riemann sphere, ä, anu finite complex pJ-ane, 0, or
vith the unit disk, D. rf 3 i= 6, then also s is ä. rf 3 is
conformally equivalent vith 0, then s is a torus or 0 or 0 punc-
tured. once. rn other cases 3 is eonformally equivalent with D. Espe-
ciaIIy if S is compact and C(S) > 1, ä = D. Since r.re vi11 be inter-
ested. in this case only, ve vir-I from now on alvays assume, unless
otherwise stated, that ar_r_ Riemann surfaces und.er consideration have
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D as the universal- covering surface.

2.2. Ihe group G of conformal automorphisns g of the univer-
salcoveringsurface 3=D of S satisfying 0og=Q iscalled
the covering trarLsformation group of D over S. It acts properly
discontinuously on D producing S as the quotient S = D/G.

The group of Möbius transformations fixing D contains G as

a subgroup, anil S being compact G is generatetl by 2g(S) hyper-
bolic Möbius transformations A,,B,,Ar,Br,...,Ag(S),Be(S) subject to
the single relation

1T

(e. r ) -1 -1 -1 -1AtBtAt'',''''Ae(s)Be(s)AeislBgisl = rd.'

I{yperbolic Möbius transformations fixing a disk depencl on three

real parameters. Ihey are the attracti,ng and the repelling fixecl
points and the multiplier. Hence a set of generators for G depends

on 5g(S) real para.meters. The relation (Z.t) reduces the mmber to
5g(s) - 3, and since S tletermines G only up to conjugation by a

Möbius transformation, i-t follovs that the analybie structure of S

depencls on 6g(s) - 5 real parameters, as is veII knovn.

2.3. Let (Dt rOt ) and (Dt'r4t') be the universar covering sur-
faces of sr = Dr/Gt and Str - Drr/Grr, respectively. A continuous map-

ping f: St -+ Srr can be lifted to a eontinuous mapping ?: Dt + Dtt sat-
isfying

(z.z)
tu

ött o f = f o 0'

Any

of

sä€

tu

continuous mapping f: Dr
tutu

f. If f" and f^ arett
Gtt such that

T, = sä o ?,.

+ D" satisfying (2.2) is called. a lifting
both 1iftings of f, then there exists a

(2.3)

Conversely: &oX

A Ii ft irrg
tu

formula f o gt
A

d.efines an ft,

of the form (2 3) is
d-ef ines a homomorphi sm

f, g' € Gf. The lifting
which satisfies

a lifting of f.
A
f : Gr + Gtt by the
tutu
f =Elof of f-1 00

mapping
tu
fof

= f(u')
Gr -> Gtt

tu
fz

f
o

A
r., (s') = gä o f(u') o ,ä-', s' € G' ,
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i. e. there

(e. t+ ;

(z .5)

And. since

(z .6)

exists an inner automorphism of

A
Aof.

N2 € G.

an isomorphisil:

.\r- 1

o = G.

Gtt such that

ft =

Nov we choose to cafl trro homonorphisms i *rra i- of Gr into-l
Gtt equivalent if there exists an inner autonorphism A of Gtt for
which (2.1+) i" satisfied.. Then all- homomorphisms arising from one con-

tinuous napping f: St -+ Srr are equivalent.
A homomorphism t: G' * G" definecl in the above manner by a lift-

ing of f is saiil to be induced by f. ft is el_ear that one homomor-

phisn Gr + Grr may be ind.uced by several nappings Sr + Srr.

If f.: D./". * ri*., /Gi*1, i = 112, are continuous, ancl if ther 1 1' 1 l_+'l ' 1+1' Atiftinc f.: D. * Di*1 of fi detemines ?.: G. * Gi*1 , i = 1,2,f, a",, 1 1+1 1 -1 -1 -i+1' A Athen f2ofi:D., +D, isaliftingof f2of1 d.eternining frof,:
U- + \r^.

IJ
Z.\. I,ie can nov give applications to Klein surfaces. Let

(X"rnro) be the complex double of a non-classical Klein surface X.

Then X^ is a Biemann surfacel assume that it has the unit d.isc D

as a universal covering surface. Let G be the corresponding covering
transformation group.

The antianalytic involution o of X- can be lifted to an anti-
analytic homeomorphism ä or D onto its"it. 8 defines an isomor-
phism ä: c -+ G.

Since X2 is a lifting of o2 = the id.entity mapping, ve have

Ao l_s

tu
OG

The group G and the mapping 8 generate a group n = (C,8),
vhich ve call a reflection group. The group R acts properly discon-
tinuously in D, and produces X as the quotient X = D/R.

Any Fuschian group G which acts i.n D and ad.mits an antiana-
lytic automorphism t of D vith (Z.r) ana (2.6) satisfied is caIIed
a symmetric Fuchsian group. ä i" . slnrmetry on G. By previous con-

sid.erations every non-classical Kl-ein surface gives ri-se to a synmetric
tr'uchsian group.
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Conversely, if G is a symmetric Fuchsian group acting i.n D such

that D/G is a Riemann surface, then, 8 being a syrnmetry on G, D/(Grä)

is a Klein surface vhose complex doubl-e is D/G.

2.5. A reflection in a hyperbolic straight line in D is an anti-
analytie involution of D. Conversely, every antianalytic involution of
D is a reflection in a hyperbolic line in D, as can be verified by a

tedious computation (see [)+], Theorem 1.9.\). rt follovs that if ]
is an involution, it leaves a hyperbolic line in D pointvise fixed.
rf now ä n." fixecl points in D, then also X2 hasg hence 8 is, ty
(Z,S), an involution of D. So, if ä rr"= one fixecl point in D, then

it is a reflection; and as such its fixed point locus is a whofe l.ine

in D.

2.6. Consicler again the complex clouble (X"rnro) of a non-c1as-

Klein surface x. Let (o,ö) be the universal covering surface

Riemann surface xc = D/G. The involution o: xc -) xc has fixed

if ancl only if äX I 0; assume that this is the case.

A lifting §; p * O of o need not have fixed points, but if
is left fixed by o, then

19

sieal
of the

point s

;€x!c

äto-1tpl) = o-1(i)

by (z.z). rt follor.is that i.f i e O-'(i), trrere exists a g^ € G

tu,ru. ,tu. -1 a
such that o(p) = B6(p); hence gO o o is a lifting of o "fi*ing 

il.
If aX I O, then ve can choose, by the above observation, such a

generator ä of the corresponcling reflection group n = (c,8) vhich

has fixed points in D. By Section 2.5 8 i= trr"r, a reflection in
a line in D.

fn It3] R.J. Sibner has stuclied finitely generated reflection groups

ancl shovn that if a symmetry 8 of G is a reflection in a line L'

then G has a firndamental domain symmetric with respect to L. Using

the method of uniformization by Beltrami equations he showed. further
that r,re can choose generators AirBi, i = 1121 ...2p1 årICl C| i = 1r2,

... re, of G which satisfy

= Ai'ätar) = Bi, äter) ätcr) -t

^l

J

([t:], Theorem 7.1)for aII i = 1r2e...1p and j = 1r2r. ,Q
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The situation is more compricated if ax = ö. Then

have fixed. points; hence a liftirg ä of o cannot have
(it D) either. From the consiaerations in 2., it follows
U2 # rd for all liftings ä of o. rn this case one ean

ators AirBi, i = 1r2r...rg, and. C of G sueh that

o d"oes not

fixed points

then that
choose gener-

*2o- = C,

for all i = 1r2r.o.
These results

to conjecture that a

surface X d epend.s

this statement in a

ära. I
1

=Bi, ätnr)=coAioc-l

rg ([tS], Theorem 7.1).
in eonjunction with the considerations in 2.2 lead- us

dianalytic structure of a compaet non-elassical Klein
on 3g(X) - 3 real parameters. Below we will give
more precise form and prove it.

3. t iftine of mappings

3.1. Let (x"rn,o) and (x'rnt ro') be the complex doubles of
non-classical Klein surfaces X and. Xr, respectively. Let f: X -+ Xf

be continuous. Generally rre cannot lift it to a continuous mapping be-

tveen the complex d.oubles. fhis is, hovever, possible if f is a homeo-
morphisn. Let us assume that such is the ease.

To construct the lifting ve rrilr have to consicler first the ori-
enting doubles (Xornoroo) ancl (Xt,n'rol) of X and Xr. The projec-
tions no: Xo -* X and rr: Xr + Xr being 1oea1 homeomorphisms the
orienting cloubles have goocl rifting properties. For exa^mp1e ve knov
that a path can be lifted to the orienting double from any point lying
over its i.nitiar point and that the rifting is unique once the initial
point is fixed. using this path lifting ve can lift the homeomorphism

f: X + Xr to a homeomorphism i: Xo + Xr satisfying

i.e. f
is also a

Note that
morphi srrl r

nt o i = f o fi -o o'

is a lifting of f. The lifting is not unique: o1 o i = i o o-oo
lifting of f. These are the only homeomorphic liftings of f.
the above construction can be earried. out because f is a homeo-

and that it is not possible for only eontinuous mappings.
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Let i be a homeomorphic lifti.rg of
orientirrg doubles. Clearly i( ax^ ) = AX1 .oo
defines a homeomorphism it X + X1 of the
(n"carr that x. was obt*irruå by årrrrrr* the

21

f to a mapping between the

Since iooo=otofrf
correspond.ing complex d.oub1es.

symmetric points of äXo

together. ) It satisfies

lTt o i = f o Tt,

i.e. it is a lifting of f to a mapping betveen the complex doubles.

rf i: X^ -+ xl is a homeomorphic lifting of f, then ot o i_cc
= f o o is also one, ancl these are the only homeomorphic liftings
of f. Note that if ve require the lifting to be only continuous,

there may be more of them.

Let (orö) and (o,Ot ) be the universal covering surfaces of
xc = D/G ancl xå = p/ct, respectively. A lifting i: x" + xr of
canbelifted.toahomeomorphisn ?: o*D satisfying io 4=Ö'o i.
And if ä: O*D is aliftingofthemapping o'o i=io o, then

there exists a lifting 8t, D * D of or: Xt -+ Xt such that

ä=8'o?.
Let nov 3 = 1o,ä) and R' - (Gt,3t ) be the reflection groups

corresponding to X and Xr, respectively. The above consiclerations

in conjunction vith Section 2.3 yield the follorring result, vhere

0 = r o 0 and er = nr o ör.
L e m m a 3.1 . A homeomorphism f: X + Xr admits a Lifting to

ahomeomorphism ?:o*D satisfying o'o?=fo0. If ! itor-
other sueh Lifting, then thev,e exists an rl € Rr sueh that ä = ,l o ?.

ConuerseLy, any mapping ! of that 1or* t:"oo Lifting of f. 
' o

3.2. A lifting ?: D -+ D of f has the property that it takes

R-equivalent points of D to Rr-equivalent points. Conversö1y, arry

mapping ä: n + D vith thi.s property induces a mapping g: D/R * D/Rt,

and if ! is continuous, g is as vefl and" ä i" * lifting of c.
This observation leacls to the folloving useful result.

Theorem 3.1. If x=D/R, thentheKleinsurface X*=
(CI - D)/R is isomorphic uith x.

Proof. The mapping z * 1/i maps D onto ä - , and incluces

an isomorphism betr^reen X and X't.

3.3. Consider a Beltrami differential u on a Klein surface
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X = D/R, where R =

we d-enote it by t.
R, i.e. it satisfies

(c,ä).
tu
uon

(to dW

and.

(t o "'aU/az
a'å /az

u

D

defines a Beltrami d.ifferential on D;

is a Beltranri differential of the grou,p

0 to the whole

D. Let w

-1o r o w lr €

= B/R and

tu
F^

forall g€G

fu
u=

ff t i" a, Beltrami differential of n = (C,ä) anci r,r: D * v(D)
a fi-quasiconformal mapping, then , o g o *-1 is conformal for each

g € G, and. r o ä o r-1 is anti-conformaf. The elements rr o U o *-',
g € G, form a quasi-tr'uchsian group Gu which together with ,o o ä o ,-1
generates a group RU caIIed a quasi-refl-ection group. From the theory
of quasi-Fuchsian groups it is clear that v(O)/nu is a Klein surface
and that the napping v: D + v(D) induces a p-quasieonformal mapping
D/R -) r,i(D)/Ru. fhese observations lead to the folloning version of
simultaneous uniformization of Klein surfaces.

Theorem 3.2. Let X and y betopologieallyequiualent
cornpact Klein surfaces. Assume that e(x) , t. Then thez,e erists a

quasi-reflection group R acting in some d.omain B sueh that x = B/R _and Y=(o-B)/R.
Proof. Since g(X) , I ve can find a refleetion group Ro such

that X = D/Ro. By Lemma 1.2 we can find. a quasiconformal mapping

f: X + Y; 1et u be the Beltrani differential of f. Lift u to a

Bertrami differentiar t of Ro and- continue it by

Then t is a Beltrami differential of R arso in ä
tuo

a U-quasiconformal mapping of the plane. Then R = {w
A

is a quasireflection grcup; if B = 0 w(D), then X
A

Y = (0 B ) /R. fhe theorem is proved..

A
CI.

be

B}
o
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)+. Homotooic maooinss

)+.t. Consicler non-classical Klein surfaces x = D/R, n = (G,ä),

and. Y = D/Rr, Rt = (Gt,ä,), and a homeomorphism f: X + Y. Let it
X + Y, be a lifting of f to a napping betrreen the complex doubles,

tu-
and let further f: D -+ D be a lifting of i (ana of course of f).
Folloving the cl-assical considerations we see that t irrdr""" an iso-

A
morphism f : G -+ Gr by the formula

?og=ä(*) o?' c€G'

Consicler the mapping ? o ä. It is a lifting of the mappi,ng i o o =

ot o i. rt follovs that ve can choose a generator ät of Rr for nhich

tu tu tu- tuf o o = or o f.

Hence the isomorphism f: G + Gr can be extend.ed to an isomorphism

f : R + Rr such that for al-l- r € R

}or=f(r) o?, and ärä) =ä'.

The isomorphism f: n * nt is not uniquely deterninecl by f. Let

ä = .l o ? be another lifting of f. Then for an r € R,

ä o r = rå o ? o r = rå o ?(r) o ? = rå o ä(") o rå 1 o ä.

tuA
Hence g d.efines an isornorphism §: R + Rr satisfying

ätr) = rå o f(") o ,å-', r € R,

i.e. there exists an inner automorphism A of Rr such that

()+.t) ä = A o ä.

As in the case of Riemann surfaces we choose to call two isomor-
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^A^^-1phisms f and g of R onto Rr equivalent if ä o f is an inner
autonorphisn of Rr. The relation is an equivalence relation. It is
clear that all isomorphisms arising from one homeomorphism betveen the
corresponding Klein surfaces are equivalent.

We also have the folloving technical result.
L emm a \.1. tY f: X-+Xr, i = Or1 ,an,ehomeomorphisms in-

dueing equiualent isomorphism.s R + Rt, then there erist Liftings
AA

}.: D * D of the mappings f., i = 0,1, such tVwt ?o = ?., .

It is left to the patient read,er to prove this.
\.2. Since rre sha11 be interested. in the compact case, we vi11o

from now on, always assure that Klein surfaces untler consid.eration are

compact.

Let X and Xr be compact and. f.: X -+ Xr, i = 0r1, be homeo-

morphisms vhich induce equivalent isonorphisms R -+ Rr. Let tO and

?., be those liftings of f^ and f, r respectively, which define ther^^ul
same i.somorphism fO = f1 of R onto Rr.

The element of length of the hyperbolic netric in the r:nit disc,

larlt(1 - lrl'), i" invariant under the elements of a refrecti,on group

acting in D. Using this metric ve ciefine a homotopy betveen fO ancl

ft in the folloving vay. Let z €D, and choose a number t, O S t S 1.

Define fi(r,t) as the point in D dividing the hyperbolie segrnent from

?o{r) to }., {r) in the ratio t: (t-t). fhen ft: o, r + Dr (z,t) -»

ilir,t), is a honotopy betveen ?o and ?1. Let r € R. since fo{") =

fr(r), it follows fron the invariance of the hyperbolic rnetric that
ili"(r),t) =äo(r)(il(r,t)) fora1l z€D andforall t, o<t:1.
This means that il defines a continuous mapping F: X x I + Xt vith
the property F o 6 = 0t o il, vhere 6 d.enotes the projection D x T -)

x x I and Ot the projection D -+ x?. Since fo(f ) = F(p,O) ancl

f.,(f) = F(p,l) for all p € X, fO and ft are homotopie. fhe honotopy

F between fO and ft has the property that each mapping f( ,t):
X + Xr maps Ax into äXr.

Hence ve have proved that homeomorphisms f i = 0r1, vhieh in-
duce equivalent isomorphisms betveen the correspond.ing reflection groups,

are homotopic. In order to prove the converse we need. the folloving
result.

L e m m a \,2, Let X be a eonrpaet Klein surface foz, whieh

e(x) 2 z. If f: x + x is a homeomorphism whieh is homotopie to the
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identity mapping of x, then f ean be Lr-fted to a mapping

ahtch is homotop'Lc to the identity mapping of X".

25

+X
c

Proof. tr'or the folloving detail-s I a.n indebteii to P. Tukia. Let

us consider the case rhere X is non-orientable. Let Xo be the ori-
enting clouble of X. We can lift the mapping f: X + X to a mapping

i: X^ + X^ vhich is homotopic to the identity mapping of X Ifoo"o
aX- = 0, X- = X-, ancl ve have nothing to prove. Assume that aX^ i d.o'oc'o

We can find a d.iscontinuous group Go, actin8 in D, vhose region
of discontinuity is 0, for vhich Xo = (0 n t)/Go. Let E = n n I'
and. B = 0 0 äD. fhe group Go is of the second kind, i.e. its limit
set L = äD - B is novhere dense in aD. Consider a lifting ?: I -+ E

of i: xo + xo. We vant to shov that ?: r * E admits a homeomorphic

extension to the vhole 5. In ortler to clo this consicler the mapping

I = rls. Let po € B be fixed. The set ao - {no} can be interpreted
as an i.ntervat antl as sueh ve can give an order in there. This order

induces an orcler in the set B - {pO}. In the saJne vay ve can also

order the set e - t?(ro)). Since ?, a * E is a honeomorphisn it
follors that ,p = ?lB either preserves or reverses the ord.er. Since

L = äD - B aloes not eontain intervals, it fo[ovs, in both eases, that
rp aclmits a homeomorphic extension ö to a napping of äD. It is not

difficult to check nov that setting I(p) = ö(p) for all p € L ve

get a homeomorphic extension of ? to . mapping of t. fn the sequel

ve sha11 denote this extended mapping also by ?. fhis topological
result is due to P. Tukia ([t:], Lemna 3).

Since i: Xo + Xo is honotopic to the identity napping of Xo,

the above lifting can be chosen in such a vay that ?og = go? for all
g € Go (see [5], fheorem 5A). From this formula it follovs that the

fixect points of the non-identity elements of Go are left fixed by ?.

Hence ? X""p= the limit set L of Go point-vise fixeci.

tains
agre es

that
(t8l )

ofx
o

We have assumed that g(X) : 2. Henee the limit set of Go con-

more than two points. Let o be a component of B. Since ?

with the id.entity mapping on the limit set of Go, it follows
tuf maps cr onto itself . Hence we can use Ear1e I s construetion

to find a homotopy Ft X^ x I '> X- between the identity mappingoo
and the mapping ir X^ + X^, which satisfies the followitg con-oo

d.it i ons :
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(ii) i(oo(p),t) = oo(i(p,t)), p € xo, vhere oo is the antianalytic
invol-ution of Xo for which X = Xo/oo.

the symmetric points of

o

Recall now that X can
e

be obtained from

together. fhen l're

Xo by means of gluing
can d.eduee from (i ) and.

X xI+X vhichis
CC

and. a lifting f of f.
The sarne argument can

AX

X^ induces a mapping F:o
a homotopy between the id.entity mapping of X"

This proves the lemma for a non-orientable X.

be appried. also to an orientabre Klein surface.
Let f.r X + Xr, i = 0n1, be homotopic homeomorphisms of compact

Klein surfaces. Assume that e(X) : Z. Let i.: X- -) Xl, i = 0r1, be
*1, -c c

liftings of the rnappings fO and fl. Then il'oi. is a lifting of
f., 'of.._ 

?r_t"*r 4.2 ve can choose the above liftings in a vay vhich
ma"kes f ., 'of. honotopic to the id.entity mapping of Xe. Hence fO ancl
'i1 can be chosen to be homotopic. Let i b" a homotopy betveen iO
and i1 and 1et ?O: O * D be a lifting of iO. We can lift the
honotopy F to " homotopy between ?O: O *D ancl some 1iftin* ?.,,
D + D of i1. Using this homotopy and the (Iiscontinuity of the group

Rt for which Xr = D/Rr we can shov that ?O and ?1 define the sa.me
A 

isomorphism fO = fl of R onto Rr, vhere R i.s the reflection
group correspond.ing to X.

Collecting aI1 the above results into a theorem ve get the fol1ov-
ing:

T h e o r e m )+.1. Let X

Kler.n suy,faees. Assume that g (X )

i = 0, 1 , are homotopt,c if and only
of R onto Rf .

4.3. For a later application it is eonvenient to express Theorem
)+.2 in a more explicit forn. Consid.er homotopic homeomorphisms fO

antl ft betveen compact Klein surfaces X = D/R and Xr = D/Rr,
p = (c,å), Rt = (ct,åt). By Theorem \.1 ve ean choose liftings ?ot

D + D and ?.: D + D of f a.nd , n A
., D of fO and ft for which fO = f1. Since X"

is compact the limit set of G is äD, and. ve can again use a result
of Tuhia (trll, Lemma 3) and continue the mappings ?0 ancl ?1 to
homeomorphisms of t onto itself. Considering the fixed points of
the elements of G we can show, as before, that ?0 a,nd ?1 must

agree on the limit set of G, i.e. they agree on AD.

= D/R and x I = D/R' be eompaet

: 2. TL,to homeomorphisms fi r x + x t

if they induce equiDalent isomorphisms
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Cn the other hand-, if ?0 and

the sarne i somorphi sm of R onto R | .

result.
Theorem \.2. Let x=D/R and xr=D/Rr becorupact

Klein surfaces. Asswne that e(x) z z. T1,to homeomorphisms f.: X -* X',
i. = 0,1, ane homotopie if and only if there erist Liftings ?.' D*5
of the mappings f., i = Or1, whieh ag"ee on aD.

1
}+.1+. Theorem l+.2 has an interesting topological corollary.

Consid.er homeomorphisms f.: X + Xr, i = 0r1, of compact Klein surfaces

of genus at least 2. We have proveal that if fO and ft are

homotopic, there exist homotopic liftings iO: X" -+ Xr and i.,: X"'* X'

of fO and f1. The converse is also true.
L e m m a )+.3. Assune that X and xr an'e eornpact Klein sw-

faces and that e(x) : z. I\,so homeomotphisms f.: X -+ X', i = 0,1,
are homotopic if and only if there erlst honotopic Liftings i.: X^ + X',
i = 0,1.

Proof. fn viev of Section )+.2 it suffices to shov the ttiftr-part

of the 1emma.

Assume that the liftings io: X" + xr and it, x"^* xå are

honotopic. Then, by fheorem l+.2, there exist liftings f.t 5'* I-
tu-and f., : D + D of fO ancl f t vhich agree on AD. Since these

mappings are also liftings of the mappings f.: X'+ X?, i = 0,1,
ve can again employ Tlreorem )+.2 to see that fO and fl are homotopic.

R e m a r k. Ttre above results are not true if g(X) = 0 or

e(x) = t.

5. Spaces of Klein surfaces

5.1. Consider a fixed compact two-manifold. Z, which may have

boundary. As vas realizeci by N.L. Alling and N. Greenleaf ([)+], fteorem

1.7.1), Z can be endoveci vith a dianalybic structure. This structure
is not unique. In this chapter ve will give a pararnetrj-zation for the

dianalytic struetures of Z. We sha1l see that the classical methods

vork on Kfein surfaces. The cases gQ) = 0 and g(Z) = 1 being r,ieI1

unclerstood ([)+], t.9) ve consider only the general case g(Z) z 2.

27

tuf 1 agree on äD , they d.efine

Hence we have the followirrg
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Let K(Z) denote the set of dianalytic structures on Z. In
K(Z) we define the folloving relations:
(i) Xt - X2 if the honotopy class of the id.entity napping X1 * X2

contains an isomorphisn of Klein surfaces.
(ii) xl o x2 if there exists an isomorphism x1 * x2 vhich is homotopic

to the identity napping of Z moclulo AZ (fixing AZ point-rrise).
It is elear that the relations antl A, are equivalence relations.

De f i n i t i on 5.1. r(Z) = K(Z)/- is theredtrcedTeichnilLler
space of Z, and TB(z) = K(z)/x is the Bers' Teiehntiller spaee of Z.

We shall here be mainly interested in the reduced Teichmiiller space

of Z vhich will later be referrecl to as the Teichmiiller space of Z.

Our technique can be, hovever, applied. also to TB(Z).

5.2. In T(Z) ne define the Teiehniiller metric d in the usual
vay: If x:- € pi € T(Z), i = 1,2, then define

(r.t)

where

to the

of f.

For our construetions it is
terms of Beltrami differentials on

faees in K( Z ) . Use Lemma 1 .2 to
i = 1 ,2, homotopic to the id.entity

a(p1 ,p2 ) inf {los Kf lf € F},

E aienotes the class of quasiconformal nappings X1 * X2 honotopic

identity napping of Z, and, Kf clenotes the maximal dilatation

=1
2

In tU(Z) ve define the Teichmiiller metric in the same vay. The

class F conSists then of those quasi.conformal nappings X1 * X2 vhich
are homotopic to the identity mapping moclulo AZ.

The above clefinition does not depend on the choiee of Klein sur-
faces representing the poi.nts p1 and p2. fhe fact that ct is really
a metric can be proved exactly in the classieal vay.

,,3. As in the case of Rienann surfaces t(Z) vith the metric
(:.t) is a manifold homeomorphic to a clomain in a Euclidean space. To

prove this ve vilI fix a poi.nt p = [X] g t(Z) and construct a local
variable about it vhich turns out to be a homeomorphisn of T(Z) onto

a d.omain in a Eucliclean space.

convenient first to express T(Z) in
X. Let Xt and. XZ be Klein sur-

find quasiconformal mappings fi t X -> Xi,
mapping. Let Ui d-enote the complex
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ciilatation of f.. Then, by Theorem 1.2, X. ancl *" correspond to
the sa^me point in f(Z), i = 1,2. Hence X1 - XZ if and only if
u" u^

X ' - X t. fn viev of this observation f(Z) can be clefined in terus
of Beltra.ni ctifferentials of X as fo11ovs.

In the set B(X) of Beltra,mi clifferentials of X define the
relation setting ul - u2 if the homotopy class of the identity

]r1 r,
mapping X -) X - contains an isomorphisn of Klein surfaces. fhen

is clearly an equivalence relation in B(X). The quotient

r( z,x) = a(x ) /-

ca11ed the Teichmiiller sBaee of Z relative to X. The definition
the Teichrriiller uetric can be transformed into T(Z,X) and ne get:

L e m m a ,.1. The natural mapping t(Z) * T(z,x) is an iso-
metrie homeomotphism.

Let us call the point in T(Z,X) vhich is representecl by O, the
origin of T(zrx). Consicler a point p = [u] € T(z,x). It is not dif-
fi.cult to veriflr that the mapping y: I -' T(Z,X), t * [tu], is a contin-
uous mapping vittr y(O) = 0 and V(1) = p. Hence T(Z,X) is connect-

ecl. In the sarne vay one can shorr that T(Z'X) is simply connectecl.

The ctetails here are exactly as in the elassical case.

5.\. To find a connection betrreen the Teiehmä11er space and the
space of quadratic differentials ve can employ a classical method.

Since ever;rbhing is well known in the classieal ease ve vi11 here

consider only non-classical Klein surfaees. We have previously assumeil

that g(x) : 2. Hence we can vrite X = D/R, where n = (c,ä) is a

reflection group. Reca11 that the Beltrn.ni ttifferentials u € S(X) of
X can be interpretecl as the Beltraui di.fferentials fi of the group

RinD.
For a Beltrami clifferential t of R in D 1et t, denote the

unique t-quasiconfornal mapping of t onto itself vhich keeps 1,i,-1
fixetl. We call f. the normalized }-quasiconformal napping of D. The

u
folloving lenma is a corollary of Theorem \.2.

Lemma5.2.u1 -rz,ifandonluif f laD=f,, IaD.u1' vz'

Folloving Bersr construction ve introduce now, for each

Beltra,mi differential t of R, the unique normalized quasiconformal
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,.^
mapping fu of 0 r,rhictr has the complex clilatation t i" D, is con-

A-
formal in D* = 0 - D, and keeps 1,i,-1 fixeci. fnitating the classi-
cal reasoning ve get the foltowing resul-t from Lemma !.2.

L e m m a ,.3. v1- u2 if and only if ru11o* = f'2 ll*.
,.r. For the readerrs convenience lre recall in this section some

properties of Schvarzian d.erivatives.
Let f be any local}y schlicht meromorphic function which is

defined. in a simply connected dornain A. Then its Schwarzian derivative

sf=f,"/f,-/{l/t,)2

is holomorphi.c in A.

By a direct computation one can check that Sf = 0 if and only if
f is a Möbius transformation. For the composite function ve have

$.2) t, o u 
- (sr o g)g'2 * sg.

And" for the function h, h( ,) =i6, we have

(>.s) sn(z) = *t
If g is holomorphic in D*, define

(:.r+) ll,pll = sup {lp(z)l(1,12 - t)zlz € D*},

and denote

n(o*) = {qlrp holomorphic in D* and I lel I . -t.

Then It(O*'; with the norn (5.)+) is a Banach space.

,.6. Let us return to the Teichmiiller space T(Z,x) of Z

relative to X = D/R. By Theorem 3.1, X = D*/R. An element tp of
-2,__,D'(x) can be, in a natural vay, interpreted. as a holomorphic function

A in D* satisfying

(r.r) e=(eos)s,2

forall g€G and
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(5.6) a = (tp o ält aå tai)Z

f'rom the compactness of X it foIlor,rs that A € H(D*).

Conversely, any tp e n(D*) satisfying (5.5) ana (5.5) arises

from a quadratic differential of X ancl is ea1Ied a quadratic differ-
ential of the group R. Denote the set of holomorphic quadratic dif-
ferentials of R by p2(n). Then nltnl is a subspace of the Banach

space u(o*). If X is a non-classical Klein surface, then u2(n) is
a real Banach space; other"wise it is a complex Banach space.

Let t U" u Beftra.nri differential of R i.n D. Ttren, ty (5.2)

and (5.3), s ., e oltnl. Denote
ru lo*
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A(n) = {s
ru Ior'

rl a Beltrami differential of in D).

Then l(n) c o2(n), and in vierr of Lemma 5.3 ve obtain a bijöctive map-

ping

{,: T(z,x) -+ l(R), [u] * S

ru lo*

It is well known that in the classical case g is a homeomorphism onto

its image which is an open set i-n the Banach space of quadratic d.iffer-

entials of X. We vish to prove that the same holds also in the non-

classicaf case.

5.7. Assume that Z is non-classical, i.e. Z is non-orientable

or has a non-empty boundary. For the topological surface Z we can,

of course, construct a complex double which is a triple (z.,n,o) sat-

isfying the folloving cond.itions:
(i) Z is an orientable tvo-manifold vithout boundary.

c
(ii) The projection n: z. + Z is an unra,:ni-fied double covering map'

(iii) a: Z -> Z is a sense reversing involution satisfying r = TT o o.cc
Let (z ,n,o) be fixed.. Then any dianalytic structure x € K(z)

c-'
induces an analytic structure X" on Z. such that (x"rrrro) is the

complex double of the Klein surface x. In the sequel ve sha1l assume

that a1l complex doubles of Klein surfaces X € K(Z) are obtained in

the above manner.

If X and Xt represent the same point in f(Z), then there ex-



ists an isomorphism f: X + Xt vhich is homotopic to the identity
mapping of Z. By Lemma )+.J f can be lifted to an isomorphisn
i: X^ + Xl homotopic to the identity mapping of Z . Hence X andc c -c- '-c
Xr corresponcl to the same point in T(Zc). It follows that n*([X]) =

tx^ I defines a mapping n*: r(Z ) -> t(z _) .C -- " C'
To prove that ,lT* is one-to-one choose tno Klein surfaces X antt

Xr from K(Z), and assu:ne that r*([X]) = n*([x']). Ihis means that
X^ - Xl. Hence there exists an isomorphism i: X- + Xl which is hono-cc-cc
topic to the id.entity napping of Zc. Since the involutions o and

ot of the complex tloubles X" and Xr, respectively, agree as nappings
of Zc, it foltovs that the isomorphism ot-1 o i o o is al-so homotopic
to the iaentity napping. Since the honotopy class of a homeomorphism

of eompact Klein surfaces contains, by Theorem l+.2, at most one isomor-
phism, it fol-l-ovs that o'-1 o i o o = i, i.u.

ot o i = f o o.

Hence i is a lifting of some i.somorphism f: X + Xr vhich is, by
Lemma )+.3, homotopic to the identity mapping of Z. This rneans that
n*: f(Z) * T(2") is one-to-one.

Let us prove nov that r*: T(Z) * T(Zc) is isometric. To this
end choose two points [x] and [xt] from a(z). Let (x",n,o) and
(Xt rnt rot ) again be the corresponding complex doubles. Denote by
dc([xc],txål) the distance of the point [x.J from the point txå]
in T(Ze). Then clearly

d( [x], [x' ] ) I dc( [xc] , txål ).

By the Teichrniiller extremal mapping theorem r,re can find. a unique quasicon-
formal mapping i: X" -+ Xr with the smaflest maximal dilatation Ki in the
homotopy class of the identity mapping. Then dc([xc],tX;J) = j tog K;.

Consider the napping i' = o'-1 o i o o: x- * i'. iirr"" o and

of coincide as mappings of Zc, i' is homotopic to the identity map-

ping. Since K1, = K;, it follovs from the uniqueness of the Teichmi.ifler

extremal mapping that i' = i, i.u.

f o o = of o f .
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Hence f is a liftirrg of some quasiconformal mapping

i" , by Lemma h . 3, homotopic to the id.entity mapping.

i' x

Thi s
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+ X I which

shows that

a([x],[x' ] ) s a.( [x"l,tx:]).

Ilence ve have shown that d([x],[x']) = a"([x"l,tx;l), i.e. rt' is
isometric.

Consider again the topological complex clouble (Z",n,o) of Z.

fhe automorphism o of Z" induces a napping o*: K(z.) - r(2.) in
the following vay. If {(U.,2. ) l:. e r} i,s a dianalytic atlas of Z.

correspond.ing to the dianalytie structure Y of 2", then o*(Y) is
the dianalytic structure of Z clefined by the atlas t(o-1(ur),2, o o)l
i € 1].

It is easy to verify
induces an involution o*:

result.
T h e o r e m 5.1. t(z) is homeomorphic to ?T'l'(T(z)), and

n*(T(z)) = {p e r(2")lo*(p) = p}.
Proof. By previous considerations fi'r is a homeomorphism onto

its inage. Hence the first part of the theorem is already proved.

Let us denote the fixed-point set of the mapping o* of f(2")
by ro{2") ancl prove that n*(T(z)) = to(2"). Note first that the

inctusion n*(T(Z)) c To(Zc) follows immecliately from the definitions.
To prove the eonverse inclusion it i.s convenient to consider the spaces

t(z,x) ancl t(2",x") instead of the spaces t(z) antl r(2"). Here

X" is the complex clouble of the Klein surface X,

Assr.rme that o*([y]) = [y] e t(2"). Let o: xc + Y be the unique

quasiconformal napping which is homotopic to the id.entity mapping of Z"

ancl has the smallest maximal d.ilatation in its homotopy c1ass. Let u

be the eomplex dilatation of o. Then the lifting t of p is a Beltrarni

differentiat of the covering group G eorresponding to Xc. Let n = (Crä)

be the reflection group for vhich X = D/R. Our theorem i.s proved if ve

succeed in shovi.ng that t it . Bel-trami d.ifferential of R i.n D.

Since o*([y]) = [y], there exists an isomorphism g: Y -+ o*(Y)

which is homotopic to the identity mapping of Zc. Note that the map-

ping o: o*(Y) -+ Y is, by definition, an isomorphism. We obtain the

following d.iagra.n

that the above mapping o* : w(Z c) + t<(Z 

")t(z ) + T(Z ) . And we have the forlowing
CC
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t\
f I o*(y),t/

vhere f = o o g is an isomorphism. Since the mapping g is homotopic

to the identity mapping of 2., f o o is homotopic to o o o. On the
other hand, f o a and. o o o are both extremal rnappings in their
homotopy class. (This follows from the facts that o is the Teichniiller
extremal rnapping and f and o are isomorphisms of Klein surfaces.)
Hence they must agree, i..e. the above diagram is commutative. Tt follovs
that we can lift the nappings o, o and f to mappings of D for which

the equation

tu
=fo

tu
0

satisfied. From this equation ve deduce that the complex dilatation
of t satisfies

*"

,l
i
x.

is
tu
u

tutu
C[0o,

fu ,Lr
u = (u

Hence t i= , Beltrami clifferentj.al of n = (C,t) in D. This proves

the theorem.

,.8. Let x = D/R, R =

irrg the construction of ,.6 we

0"t r(zcrX") -> a(c)

tutu, äo/äz
O öi,N.

äo/Dz

defined as n(n) in ,.6.
open in o? tc I and. that
öR, D2( n)o= r3(G), and. we

(crt) , and X. = D/G as before. Repeat-

obtain a mapping

Here A(G)

that A(G)

Sinc e

$.7)

is
is

G

The classical theory tells us

U_ is a homeomorphism.,c

obtain a commutative diagram

\(Z
^(G)

t
I i.,"r.
I

^(R)

c 'xc

I
,x)

fi*

T(Z

rr^
\u.
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As vas noted in Section 1 . !, the involution o of x^ d.efines an in-
volution o* of ,'(r") = D:(G). A computation strov's that the diagram,,

(5 .B ) r(z

o

\(z

is commutative. Considering the fixed point sets of the mappings sx rre

obtain thenrby Theorem !.1rthe folloving formula:

(>.g) a(n) = 
^(G) 

n n2(n) .

Since, by the classical result, a(c) is open in ,2(C), and since

,ftnl . o2(c), a(n) is, by (I.9) open in l2(*). rne ralt tnat { is
a homeomorphism follows from the commutative cliagra.n (5.7) ana from the

facts that n*: T(Z) + r*(T(Z)) and i!. are homeomorphisms.

,.9. fn D'(R) ve have ctefined the norm (i.)+). On the other

hand, by Theorem 1.1, D?(x) = ol(n) is a (3c(x)-3)-dimensional real' o'^ o'
vector space. Thus, in Ot(n) we have also a Euclidean metric, vhich

d,efines the same topology as the norm (r.)+). Hence ve get- from the

preceding consid.erations in conjunction r^rith the cfassical results:
T h e o r e m 5.2. Let Z be a eornpact topological two-manifold

with g(z) Z 2. The v'edueed TeichmilLlet: space T(z) of z is a mani-

fold homeomorphie to an open sinrply connected subset of a Euclidean spaee.

If Z is ov,ientable and does not haue boamdary, then dimn T(Z) =

:e(z )-: , othem,tise airq r(z ) = 3c(z )-3.
,.10. Assume that Z is not classical. It is vel-l--known that

T(Zc) can be endoved. vith a naturaf complex strueture such that li," 
,i=

a biholomorphic embeclding of T(Zc) into the complex Banach space D'(G)

( [7] , rtreorem r).
rt is easy to check that the invofution o*: o2(c) * o2(c) in

diagram (:.8) is a conjugate-linear mapping. Hence it foflows from (5.8)

that o*: T(2",r") * T(zcrxc) is an anti-analytic involution. fhus

,*1f(z)), leing the fixed point locus of o*, is a reaf analytic submani-

fold of f(2"). (The real analytic structure of nx(T(Z)) can be d-efinecl

by the real analSrtie atlas {(n*(T(Z)),{,")}. ) then ve can transform the

n2(c)

t
lo*

I

D2(G)

C,X

.1

c'x
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real analytic structure of r*(T(z)) into a real analybic structure of
T(Z) usi-ng the mapping r*. The atlas {(f(Z),rt,)} is a reaf analytic
atlas of the above structurer. Final1y, it is clear that the mapping
n*: T(Z) * r(z^) is a real analytic immersion.

c
R e m a r k 1. Let H be the group generatecl by the involution

o: Z" + 2". Then the space n*(T(Z)) is tte relative Teichmiiller space
T(z^,H) of Kuribayashi studied by Earle in t9l.c'

R e m a r k 2. Our method.s coufcl also be applj-ed to the Bersr
Teichmiiller space TB(z) of a non-orientable z. The result seems to
be that T.(Z) can be embedded into T.(Z^) as a reaf analytic sub-lJ -ts' o'
manifold. Here zo is the orientable cloubl-e of the topological surface
Z.
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