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Introduction

It was realized as late as in 1969 by N.L. Alling and N. Greenleaf
([3]) that the analytic counterpart of a real algebraic curve is a pos-
sibly non-orientable surface with boundary and with a dianalytic struc-
ture. That observation motivates the study of these surfaces, known as
Klein surfaces.

A real algebraic curve C 1is a complex curve Cc with an invo-
lution o of Cc' This complex curve corresponds to a compact Riemann
surface Xc’ and o0 induces an antianalytic involution o of Xc’

Our Klein surface X corresponding to C 1is obtained as the quotient

X = Xc/o. This representation for a Klein surface has been successfully
used to transform results about Riemann surfaces into Klein surfaces ([2],
[4], etc.).

In this paper we are interested in the problem of moduli of Klein
surfaces. Using the representation X = Xc/o one can transform this
problem into symmetric Riemann surfaces (see [9] and the references given
there). 1In that way one can study Teichmiiller spaces of Klein surfaces.
The author believes, however, that it is useful, or at least instructive,
to work directly on Klein surfaces.

As regards the analytic definition of the Teichmiiller space T(X)
of a Klein surface X, we have two possibilities which lead to different
results. While these two definitions are analytically equally well
motivated it seems to be natural, from the geometric point of view, to
define the Teichmiiller space T(C) of a real curve C as the subspace
of T(CC) whose points are represented by real curves "homeomorphic"
to C. This leads us to consider a generalization of reduced Teichmiiller
spaces. We will show in the present paper how Bers' methods (see [1],
[71, and [11]) can be applied to such Teichmiiller spaces. While prepar-
ing this research the author has found O. Lehto's lectures ([11]) espe-
cially useful.

In Chapter 1 we recall some definitions about Klein surfaces fol-



lowing Alling and Greenleaf ([4]). We also define quasiconformal map-
pings of Klein surfaces. The novelty here is that a quasiconformal map-—
ping can be, in some sense, sense-reversing.

In Chapters 2 and 3 we recall some well-known theorems about the
uniformization of Klein surfaces (see [13]) and, following Bers ([6]),
obtain a version of simultaneous uniformization of compact Klein sur-
faces.

In Chapter 4 we consider 1liftings of mappings and their homotopies.
We obtain a topological result (Lemma 4.3) which allows us to simplify
the definition of the reduced Teichmiiller space of a surface with bound-
ary (ef. [101).

In Chapter 5 we define the Teichmiiller space T(Z) of a possibly
non-orientable compact two-manifold Z. The definition is analogous
to those given in [9] and [12]. Then, following Bers ([1], [7], [111),
we embed the space T(Z) into a suitable space of gquadratic differen-
tials. Using this embedding we prove that T(Z) is homeomorphic to
a simply connected open subdomain of a Euclidean space. If Z 1is non-
orientable or has a non—empty boundary, the real dimension of T(Z) is
3g(Z) - 3; otherwise it is 6g(Z) - 6. Here g(Z) denotes the alge-
braic genus of Z.

In the end we prove, relying on classical results, that T(Z) has
a natural real analytic structure such that the above embedding is a

real analytic mapping of T(Z) into a real Banach space.

1. Klein surfaces

1.1. In this paper we are dealing with a topological two-manifold
7Z which may have boundary; the boundary of Z 1is denoted by 3Z. We
call an atlas i = {(Ui,zi)li € I} of Z dianalytic if the coordinate
transition functions z. o 231 belong to the class C2 and satisfy
either a(zi 0 231)/82 =0 or B(Zi 0 231)/32 = 0 in a neighborhood
of every interior point of Zj(Ui n Uj) in the complex plane C.

For notational convenience we shall assume here that each set
Zi(Ui) is an open subset of the closed upper half-plane H = {z € (|
Im z 2 0}.

Two dianalytic atlases U and V are called equivalent if Tuv
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is a dianalytic atlas of Z; an equivalence class X of dianalytic

atlases of Z 1is called a dianalytic structure of Z. A topological

two-manifold Z with a dianalytic structure X 1is called a Klein sur-
face. The correct notation (Z,X) for a Klein surface is usually
abbreviated to X.

Since the coordinate transition functions of a dianalytic atlas
can be sense-reversing, a Klein surface need not be orientable. For
example, the real projective plane is a Klein surface.

On the other hand, every Riemann surface has a natural dianalytic
structure; Klein surfaces arising from Riemann surfaces in this manner
are called classical. A Klein surface is non-classical if it has bound-
ary or 1s non-orientable.

Let f: X > Y %be a continuous mapping of Klein surfaces which
maps 09X into 3Y. Let «x: C~>C, x + iy » x + i|y[, be the folding

map. We call f a morphism of Klein surfaces if for each p € X and

for all local variables z and w about p and f(p), respectively,
we can find a holomorphic function F such that w o f =« o F o z holds
in some neighborhood of p. A morphism is an isomorphism if it is a
homeomorphism.

1.2. We will transform results about Riemann surfaces into Klein
surfaces using two kinds of coverings of Klein surfaces with Riemann
surfaces.

The orienting double of a Klein surface X is a triple (Xo,no,oo)

satisfying the following conditions:
(i) XO is a Riemann surface, possibly with boundary, or a disjoint
union of two of them.
(ii)  The morphism ™ Xo + X 1is a two-to-one covering map which is
locally a homeomorphism.
(iii) o X > X, is an antianalytic involution satisfying m=
T, 0 0.

By an explicit construction we can show that every Klein surface
X has an orienting double XO which will be connected if and only if
X 1is non-orientable. XO has a non-empty boundary if and only if X
has. BXO consists, in fact, of two parts which are mapped onto each
other by oy and which are mapped homeomorphically onto 23X by M-

The complex double of a Klein surface X 1is a triple (Xc,ﬂ,o)

satisfying the following conditions:



(i) XC is a Riemann surface or a disjoint union of two of them.
(ii)  The morphism : XC +~ X 1is a double covering map which is two-
to-one and locally homeomorphic outside of n—T(BX) and one-to-one in
n_1(3X).

(iii) o: XC > Xc is an antianalytic involution satisfying 7 = 7 o o.

If 3X = @, then the orienting double is also the complex double.
If 93X # @, then BXO consists of two symmetric parts both homeomorphic
to 9X. Gluing them together we obtain XC. (m and o are then the
mappings of Xc defined by the mappings T and 9 of XO.) Hence
every Klein surface has also a complex double. One can show that it is
unique up to an isomorphism ([4], Proposition 1.6.2).

A Riemann surface admitting antianalytic involutions is called
symmetric; an antianalytic involution of a symmetric Riemann surface is
called a symmetry. The complex double Xc (the orienting double Xo)
of a Klein surface X 1is a symmetric Riemann surface with symmetry o
(co). From (ii) and (iii) it follows that X = X /o (x = xo/oo).

Conversely, given a symmetric Riemann surface S without boundary,
if ¢ is a symmetry on S, then S/¢ 1is a Klein surface whose complex
double is 8.

1;3. Consider a collection o= {fi} of functions fi: Ui > 6,
where (€ denotes the Riemann sphere, defined on charts of the dianalytic
atlas U = {(Ui’zi)|i € I} of a Klein surface X. We recall that £y

is a meromorphic function relative to U if the following holds:

(i)  Each function f. o0 zi1 is meromorphic, and fi(BX n Ui) is
a subset of the extended real line.

(ii) Let p € us n Uj' Then if z; 0 z31 is holomorphic at Zj(p),

fi(p) = fj(p); otherwise fi(p) = f.(p).

If fﬁ and fﬁ are meromorphic functions relative to U and Q,
respectively, then they are equal if fa u fg is a meromorphic function
relative to U U V. An equivalence class f of meromorphic functions

relative to dianalytic atlases of X is a meromorphic function on X.

Meromorphic functions on X form, in an obvious way, a field
M(X). It contains € as a subfield if and only if X is classical.
If X 1is not classical, then M(X) is a field extension of R, the
field of real numbers. If X is compact, the transcendence degree

of the field extension M(X)/R is 1.
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Let @: X - Y Dbe a morphism of Klein surfaces, and let U=
{(Ui,zi)li € I} and V = {(Vj,wj)|j € J} be dianalytic atlases of X
and Y such that each chart of U is connected and each m(Ui) is
contained in some V.. Consider a meromorphic function f € M(Y) rep-
resented by f~ = {f }. For the moment, let o denote the mapping of
$ onto 1tself whlch takes a complex number to its complex conjugate
and « to o,

Choose an (Ui’zi) € U, and let (Vj’wj) € V be such that
w(Ui) c Vj' Since wj(Vj) is a subset of the closed upper half-plane,
we can continue, by the Schwarz reflection principle, the meromorphic
function f. o w31 to a meromorphic function fj/g\h31 defined in the
set wj(Vj) ] a(wj(Vj)). Let now ® be the holomorphic function satisfy-
ing w. o@=k o0 ¢ o z; in Ui' (Eventually we can find such an @.)
Denote fj/CJ\w;1 0®o0z by m*(g)i. The family o*(f )U {o*(£). ]

i € I} is then a meromorphic function relative to U. Let w*(i) de-
note its equivalence class. After all these definitions we obtain
a well defined homomorphism @*: M(Y) - M(X), £ > @*(f).

If ¢ 1is not constant, @* 1is a monomorphism. If (Xc,n,o) is
the complex double of X, then w*(M(X)) equals to the subfield of
M(Xc) left fixed by o* ([L], Theorem 1.6.4).

1.4, Let U= {(Ui,zi)|i € I} be a dianalytic atlas of X. If
Ui n Uj # ¢, we define the function Tij: Ui n Uj > T by

= (2 2 = (2 -1
ij-—(az(zlon ) + (z oz ))oz (Bx(ziozj ))on,
3z

and recall that a family wy = {wili € I} of meromorphic functions
A

w, : Ui + € 1s a meromorphic differential relative to U if:

(i) wi(BX n Ui) <R U {«} for each i € I.

.. -1 . . _ ,
(ii) 1f z; 025 s holomorphic at zj(p), then mj(p) = wi(p)Tij(p),

i
Meromorphic differentials wy and g relative to atlases U and

otherwise wj(p5 = w.(p)Tij(p).

ﬁ, respectively, are called equal if wU wg is a meromorphic differ-
ential relative to U U V. Equivalence classes « of meromorphic dif-
ferentials relative to dianalytic atlases of X are called meromorphic

differentials on X. They form a vector space D(X) which is a complex
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vector space if X 1is classical and real otherwise.

If f € M(X), then taking the derivates locally we can define
the differential 4f of f which turns out to be a meromorphic dif-
ferential. If f 1is not constant, then d4f # O.

The product fw of a meromorphic function f and a meromorphic
differential w 1is locally well-defined. Checking the transformation
rule we see that fw 1is, in fact, a meromorphic differential on X.
And if f € M(X) is not constant, then every w € D(X) can be written

in the form
(1.1) w = gdf,

where g € M(X) is uniquely defined by w. Hence D(X) 1is a one—dimen-
sional vector space over M(X).

A non-constant morphism ¢: X > Y of Klein surfaces induces a
monomorphism ¢*: M(Y) -+ M(X). Using (1.1) we can define the mapping
¢*: D(Y) > D(X) induced by ¢ setting ¢*(gdf) = ¢*(g)d¢*(£), where
the ¢*'s on the right hand side denote the mapping ¢*: M(Y) > M(X).

The definition does not depend on the choice of f. It is clear that
the mapping ¢* is a M(Y)-linear injection of D(Y) into D(X).

Let (Xc,n,o) be the complex double of X. Checking the defi-
nitions it is easy to see that m*(D(X)) equals to the subset of D(XC)
left fixed by o*. (Hence the differentials on X can be characterized
as the differentials of X, which take conjugate "values" at symmetric
points of XC.)

A differential w € D(X) 1is holomorphic if it is defined by a
family of holomorphic functions. Holomorphic differentials form a sub-

space D (X) of D(X) which is finite dimensional if X 1is compact.

of
(This follows immediately from the corresponding result about Riemann
surfaces and the above remark.)

1.5. Consider again the atlas U = {(Ui’zi)|i € I} of X. We

will say that a family = {aili € I} of meromorphic functions
A

o~
U
a Ui + C 1is a meromorphic quadratic differential relative to U if
the following holds:

(1) ai(BX n Ui) cR U {»} for each i € I.

.. -1 . .
. . hol h t . . = a. ..
(ii) 1If z; 0 zJ is holomorphic a zJ(p), then aJ(p) al(p)Tla(p

)2,

e 2
otherwise aj(p) = ai(p)Tij(p) for all p € U, N Uj'
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In the set of meromorphic quadratic differentials relative to di-
analytic atlases of X we introduce an equivalence relation in the
usual way: “ﬁ and oF oy
ferential relative to U U V. Equivalence classes of meromorphic quad-

are equivalent if U g is a quadratic dif-

ratic differentials relative to atlases of X are called meromorphic
quadratic differentials on X. They form a vector space DZ(X). If

a meromorphic quadratic differential is defined by a family of holo-
morphic functions, it is called holomorphic. The space Di(X) of

. . . . . 2
holomorphic quadratic differentials on X 1is a subspace of D (x).

Di(X) and D2(X) are complex vector spaces if X 1is classical,
otherwise real. If X 1is compact, Di(X) is finite dimensional.
Let wy = {wi‘i €I} €w and 15 = {Tili € I} € T be meromorphic

(holomorphic) differentials relative to U. The family 03Ty = {wiri}
is then a meromorphic (holomorphic) quadratic differential relative to
U; its equivalence class wt 1is a meromorphic (holomorphic) quadratic
differential on X which we call the product of w and t. The defi-
nition of wt does not depend on the choice of the dianalytic atlas U.
Conversely, if ay = {aili € I} € o is a quadratic differential
relative to U and if wy = {wili € I} € w 1is a non-constant differ-
ential relative to U, then the family {ai/wili € I} 1is a meromorphic
differential relative to U; denote its equivalence class by o/w. Then
it is clear that for all o € D2(X) and for all non-zero w € D(X) we

can write
(1.2) a = Tw,

where T = a/w € D(X) is uniquely determined by w.

Let ¢: X > Y be a non-constant morphism. In 1.4 we have seen
that it defines a linear injection ¢*: D(Y) » D(X). Using (1.2) we
can define the corresponding mapping ¢*: DE(Y) > D2(X) setting
o*(a) = ¢*(1)9*(w), where the ¢*'s on the right hand side denote the

mapping ¢*: D(Y) » D(X). Then ¢* is a well-defined linear injection

of D2(Y) into D2(X) which maps Di(Y) into Di(X).
If (Xc,ﬂ,o) is the complex double of X, then D2(X) and Di(X)

are, as vector spaces, isomorphic to n*(DZ(X)) and ﬁ*(Di(X)),
respectively. And it follows from all the given definitions that

gquadratic differentials on X can be characterized as quadratic differ-



entials on Xc taking conjugate "values" at symmetric points.

1.6. In this section we assume that X is a compact Klein sur-
face. Then the vector space of holomorphic differentials on X, Do(X)’
is finite dimensional. We recall that if X is classical, DO(X) is
a C-vector space, being otherwise a R-vector space, and define the

algebraic genus of X, g(X), by

dim, D (X) if X 1is classical
C o

g(X) =
dlnflR DO(X) if X 1is non-classical.

Lemma 1.1. If X <Zs a compact non-classical Klein surface,
then g(XC) = g(x).
Proof. Let o € D (X ). The differentials w. = (0 + o%(u))/2

]
and w, = (0 - o*¥(w))/2i satisfy ws = o*(wj), j = 1,2, and hence

define differentials w. € DO(X) for which &j = n*(wj), j=1,2. It
follows that any T € Do(Xc) can be written in the form T = n*(r1) +

iﬂ*(Te), where T € DO(X), J = 1,2. If now the differentials WysWys

T form a basis for the real vector space DO(X), then the differ-
entials 1T*(w1),ﬂ*(w2),...,n*(wn) form a basis for the complex vector

space Do(Xc)° Hence dimp DO(X) = dim Do(Xc)' The lemma is proved.

C
For compact Klein surfaces X we define the topological genus

p(X) as follows. If X is classical, p(X) denotes the number of tori
which connected together give X. If X is not orientable and 03X = ¢,
then p(X) is the number of real projective planes needed to build X.
If 08X # ¢, then the Schottky double, XS’ of X, which is obtained by
gluing two copies of X together along the boundary, is a Klein sur-
face without boundary. And we define p(X) = p(XS).

In addition to the topological genus also the Euler characteristic
x(X) of X 1is used in classification of compact topological surfaces.
For clarity we give the relations between g, p and x in the following

table ([2], Theorem 1.1).

X = ¢ X # ¢ 3X = 3X # ¢
k(X) =0 k(X) =0 k(X) = 1 k(X) = 1
p(X) = g(x) g(X) g(X) + 1 2g(X)

x(X) = 2 - 2g(X) 1 - g(x) 1 - g(x) 1 - g(x)
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Here k(X) denotes the index of orientability being O if X 1is orient-
able and 1 otherwise.

Remar k. By definition, the Euler characteristic and the topo-
logical genus of a Klein surface depend only on the underlying topologi-
cal space, while the algebraic genus depends, a priori, also on the di-
analytic structure. The above table shows, however, that also g(X) is
defined by the topological type of X. Since any compact topological
two-manifold carries a dianalytic structure, we can, by this observation,
speak of its algebraic genus.

1.7. In the classical case we know that for compact Klein surfaces
X dimw Di(X) = 3g(X) - 3. If X 1is not classical, then we can employ
the reasoning of the proof of Lemma 1.1 once more to obtain the follow-—
ing:

Theorem 1.1. Let X be a compact non-classical Klein sur-
face. Then dimg Di(X) = 3g(X) - 3.

1.8. Let U = {(Ui,zi)li € I} Dbe again a dianalytic atlas of
a Klein surface X. Let the functions Tij be defined as in 1.4. We
consider a family vy = {uili € I} of functions wpr Uy > € subject
to the following conditions:

(1.3)
(i) Each function w0 z; is measurable with respect to the Lebesgue
measure in C.

(ii) Assume that U, N Uj #¢. If z;o0 251 is holomorphic at zj(p),

then uj(p) = ui(p)Tij(p)/Tij(p); otherwise uj(p5 = ui(p)Tij(p)/Tij(p)
for all p € Ui n Uj'
The family uy is called a (-1,1)-differential relative to U.

If it satisfies
sup ] fuy oz | Il 1L € <1,

where || |loo denotes the L -norm, it is a Beltrami differential rela-

tive to U. The Beltrami differentials and W relative to U

e
and V, respectively, are called equivaleng if G U W5 is a Beltrami
differential relative to U U V. An equivalence class of Beltrami dif-
ferentials relative to dianalytic atlases of X is called a Beltrami dif-
ferential on X.

Let f: X > Y be a homeomorphism of Klein surfaces. We call f
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K-quasiconformal, for a finite X 2 1, if for each p € X and for each
local variable =z about p we can choose a local variable w about
f(p) such that the mapping w o f o 271 s K-quasiconformal near z(p);
f 1is quasiconformal if it is K-quasiconformal for some finite K. If
f 1is quasiconformal, then the smallest number K for which f is K-
quasiconformal is called the maximal dilatation of f.

By the theory of plane quasiconformal mappings it is clear that
a 1-quasiconformal mapping is an isomorphism of Klein surfaces, and if
f.: X, »X, and f.: X, - X3 are K1— and Kg-quasiconformal mappings,

r;spe;tiveiy, then 2f2 i f1 is K1K2—quasiconformal.

Let f: X > Y be quasiconformal, and let U = {(Ui’zi)li €1}
be a dianalytic atlas of X. Assume that each set f(Ui)’ i€1, is
contained in some dianalytic chart of Y. Then for each i € I we can
choose a local variable W, on f(Ui) such that w. o f o z;1 is

quasiconformal. After that choice the functions

_'I -
a(wi of o z; )/ 3z

pe =
1 -1
B(Wi ofoaz; )/3z

clearly form a Beltrami differential relative to U; its equivalence
class u 1is called the Beltrami differential of f, and f 1is called
a p-quasiconformal mapping of X.

Conversely, given a Beltrami differential u on X, we can
solve the differential equation 8f/3z = udf/dz on every chart (U,z).
Let f, and f, be homeomorphic solutions corresponding to (U1,ZT>

and (U )» respectively. If U1 n U2 # ¢, then a formla computation

2°%2
shows that the homeomorphism f2 0 f;T is either analytic or antiana-
lytic depending on 1z, o 271, Tt follows that O = {(U,£)} is a ai-

analytic atlas for thi top;logical surface X. X together with the
corresponding dianalytic structure is a Klein surface which we denote
vy xH.

A mapping f: X > Y, pu-quasiconformal on X, is an isomorphism of
X" onto Y, and the identity mapping X - M is a u—-quasiconformal
mapping of X. Hence we have the following result.

Theorem 1.2. Let u be a Beltrami differential on a Klein

surface X. There exist u-quasiconformal mappings of X. If f and
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f, are both u-quasiconformal, then there exists an isomorphism g: f
> fz(X) such that £

L0

5 =go f1.

1.9. Consider a disk D', D' € D = {z| |z| < 1} and a sense preserv-
ing homeomorphism f of D onto itself. Let f': D > D be a homeo-
morphism with the following properties:

(1) f'=f in D - D'.

(ii) f' is locally quasiconformal in D'.

(iii) If f 1is quasiconformal in a neighborhood of a point of 3D',
then f' 1is also quasiconformal in that neighborhood.

(iv) If f 1is quasiconformal in a neighborhood of 23D', then f'
is quasiconformal in that neighborhood.

It is not difficult to see that for any f there exists an f'
(which is not uniquely determined) with the above properties (see [14],
Lemma 1.1).

It is clear that in the above we can replace the sets D and D'
by the sets DNH and D' N H and still find an f' with the prop-
erties (i)-(iv). Recall that H denotes the upper half-plane.

Using this auxiliary mapping we shall show that any homeomorphism
g: X > Y of compact Klein surfaces is homotopic to a quasiconformal
mapping.

Consider a dianalytic atlas {(U1,z1),(Uh,z ),...,(Un,zn)} of X
=

with the following properties: °
(i) Each Zi(Ui) is either D or D N H.
(ii) Each g(Ui) is contained in a dianalytic chart (Vi’wi) of Y
such that wi(g(Ui)) is either D or DN H.
(iii) Each mapping W, 0go z; is sense-preserving.

Let D', D' © D, be such a disk that the sets z;1(D') or
2;1(D’ N H) form a covering of X. Having done all this define the
sequence (go,g1,...,gn) as follows. Set go =g. If 85 _1 is de-

fined, then define g; to be g, outside of Ui; in Ui first

-1
set £ =w. o g. o ZT1 and then define g. as WT1 o f' o z., where
1 1-1 1 1 1 1
f' is the auxiliary function defined by f and having the properties
(1)-(iv).
By construction each g; is homotopic to 851> whence &, is
homotopic to g, = 8- &, is also locally quasiconformal in X. Since

X 1is compact, g, is quasiconformal. Hence we have proved the follow-
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ing result.
Lemma 1.2. The homotopy class of a homeomorphism of compact

Klein surfaces contains quasiconformal mappings.

2. Uniformization of Klein surfaces

Let ¢: X > X be the universal covering surface (in the topologi-
cal sense) of a Klein surface X. We can endow X with a dianalytic
structure requiring ¢: X+>X tobea morphism of Klein surfaces. Then
the group G of covering transformations turns out to be a subgroup of
the group of automorphisms of the Klein surface X. Knowing the classi-
cal results concerning Riemann surfaces it is not difficult to study G
and i, since X is, in fact, the universal covering surface of the
orienting double XO of X.

In our applications, however, another covering of X plays a fun-
damental role. This covering we obtain using the complex double XC
of X.

2.1. Let us start recalling some classical results about the
uniformization of Riemann surfaces without boundary.

By the universal covering surface of a Riemann surface S we mean

a pair (é,¢) satisfying the following conditions, where I denotes
the unit interval:
(i) S is a simply connected Riemann surface, and ¢: S >~ S is a lo-

cally conformal mapping.

(i) If y: I+ S 1is a path and if ¢(p ) = v(0), then there exists

a path y: I > S with y(0) = io and ¢ o y = v.
The path y in (ii) is called the lifting of y from the point

A simply connected Riemann surface without boundary is conformally
equivalent with the Riemann sphere, G the finite complex plane, €, or
with the unit disk, D. If § is @ then also S is @. If S is
conformally equivalent with €, then S 1is a torus or C or C punc-
tured once. In other cases § is conformally equivalent with D. Espe-
cially if S is compact and g(S) > 1, S = D. Since we will be inter-
ested in this case only, we will from now on always assume, unless

otherwise stated, that all Riemann surfaces under consideration have
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D as the universal covering surface.
2.2. The group G of conformal automorphisms g of the univer-
sal covering surface S=D of S satisfying ¢ o g = ¢ 1is called

the covering transformation group of D over S. It acts properly

discontinuously on D producing S as the quotient S = D/G.

The group of Mdbius transformations fixing D contains G as
a subgroup, and S being compact G is generated by 2g(S) hyper-
bolic M&bius transformations A1’B1’Ag’Bg"‘°’Ag(S)’Bg(S) subject to
the single relation

(2.1) A1B1A11B11...Ag(S)Bg(S)AggS)Bgzs) - 1a.

Hyperbolic Mdbius transformations fixing a disk depend on three
real parameters. They are the attracting and the repelling fixed
points and the multiplier. Hence a set of generators for G depends
on 6g(8) real parameters. The relation (2.1) reduces the number to
6g(s) - 3, and since S determines G only up to conjugation by a
M&bius transformation, it follows that the analytic structure of S
depends on 6g(S) - 6 real parameters, as is well known.

2.3. Let (D',¢') and (D",¢") be the universal covering sur-
faces of S' =D'/G' and S" = D"/G", respectively. A continuous map-
ping f: 8' > S" can be lifted to a continuous mapping ¥: D' » D" sat-

isfying
n
(2.2) " 0o f=f o ¢'.

N
Any continuous mapping f: D' - D" satisfying (2.2) is called a lifting
" "
of f. If f1 and f2 are both liftings of f, then there exists a
gg € G" such that

N

n
- ”
(2.3) £, =gjof,.

, of the form (2.3) is a lifting of f.

A
A lifting f of f defines a homomorphism f: G' - G" by the
N A N L. N n
formula f o g' = f(g') o f, g' € G'. The lifting £, = gg of of f
A

N
Conversely, any mapping f
Y

defines an f1: G' > G" which satisfies

w1

A A
£.(g") =gjoflg)og) » &' €C,
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i.e. there exists an inner automorphism A of G" such that

A

A
(2.h) f,=Aof.

Now we choose to call two homomorphisms ? and %1 of G' into
G" equivalent if there exists an inner automorphism A of G" for
which (2.4) is satisfied. Then all homomorphisms arising from one con-
tinuous mapping f: S' » 8" are equivalent.

A homomorphism %: G' - G" defined in the above manner by a lift-
ing of f 1is said to be induced by f. It is clear that one homomor-
phism G' - G" may be induced by several mappings S' - s".

f fi: Di/Gi - Di+1/Gi+1’ i

. . ,\l - A
lifting f.: D. = D. of f. determines f.: G. - G.
N 1 1 1+1 1 1 1 1

= 1,2, are continuous, and if the
22,

?
20 1t

+1° 1 7
n
then f2 o f1: D1 - D3 1s a lifting of f2 [} f1 determining
G1 > G3.

2.4. We can now give applications to Klein surfaces. Let

1
A
f

(Xc,n,o) be the complex double of a non-classical Klein surface X.
Then Xc is a Riemann surface; assume that it has the unit disc D
as a universal covering surface. Let G be the corresponding covering
transformation group.

The antianalytic igvolution g of Xc can be lifted to an anti-
analytic homeomorphism o of D onto itself. G defines an isomor-
phism 6: G > G.

Since 32 is a lifting of 02 = the identity mapping, we have
(2.5) 5 €.
And since 0 is an isomorphism,
(2.6) cGag =G.

The group G and the mapping g generate a group R = (G,g),
which we call a reflection group. The group R acts properly discon-
tinuously in D, and produces X as the quotient X = D/R.

Any Fuschian group G which acts in D and admits an antiana-
lytic automorphism S of D with (2.5) and (2.6) satisfied is called
a symmetric Fuchsian group. ¢ is a symmetry on G. By previous con-

siderations every non-classical Klein surface gives rise to a symmetric

Fuchsian group.
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Conversely, if G is a symmetric Fuchsian group acting in D such
that D/G 1is a Riemann surface, then, S being a symmetry on G, D/(G,g)
is a Klein surface whose complex double is D/G.

2.5. A reflection in a hyperbolic straight line in D 1is an anti-
analytic involution of D. Conversely, every antianalytic involution of
D is a reflection in a hyperbolic line in D, as can be verified by a
tedious computation (see [4], Theorem 1.9.4). It follows that if i
is an involution, it leaves a hyperbolic line in D pointwise fixed.

If now 6 has fixed points in D, then also 32 has; hence b is, by
(2.5), an involution of D. So, if G has one fixed point in D, then
it is a reflection, and as such its fixed point locus is a whole line
in D.

2.6. Consider again the complex double (Xc,n,o) of a non-clas—
sical Klein surface X. Let (D,$) be the universal covering surface
of the Riemann surface Xc = D/G. The involution o: Xc - XC has fixed
points if and only if 93X # ¢; assume that this is the case.

A lifting 5: D+>D of o need not have fixed points, but if

p € Xc is left fixed by o, then

N

567NN =0 )

by (2.2). It follows that if 8 € ¢_1(p), there exists a g, € G
such that 8(%) = go(g); hence g61 0 ¢ is a lifting of o fixing 5.
If 95X # ¢, then we can choose, by the above observation, such a
generator g of the corresponding reflection group R = (G,g) which
has fixed points in D. By Section 2.5 G is then a reflection in
a line in D.
In [13] R.J. Sibner has studied finitely generated reflection groups
and shown that if a symmetry O of G 1is a reflection in a line L,
then G has a fundamental domain symmetric with respect to L. Using
the method of uniformization by Beltrami equations he showed further
that we can choose generators Ai’Bi’ i=1,2,...,p, and Cj’ J = 1,2,

..,4, of G which satisfy

G(Ai) =B., 6(B.) =A.,

for all i = 1,2,...,p and .»a ([13], Theorem T.1).

1]
—_
-
n
-
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The situation is more complicated if 93X = ¢. Then o does not
have fixed points; hence a lifting G of o cannot have fixed points
(in D) either. From the considerations in 2.5 it follows then that
gz # Ia for all liftings ¢ of o. In this case one can choose gener-—

ators Ai’Bi’ i=1,2,...,8, and C of G such that

(A.) =B., 8(B.)=C oA ocC
i i
for all i = 1,2,...,g ([13], Theorem T.1).
These results in conjunction with the considerations in 2.2 lead us
to conjecture that a dianalytic structure of a compact non-classical Klein
surface X depends on 3g(X) - 3 real parameters. Below we will give

this statement in a more precise form and prove it.

3. Lifting of mappings

3.1. Let (Xc,n,o) and (Xé,n',o') be the complex doubles of
non-classical Klein surfaces X and X', respectively. Let f: X - X'
be continuous. Generally we cannot 1ift it to a continuous mapping be-
tween the complex doubles. This is, however, possible if f is a homeo-
morphism. Let us assume that such is the case.

To construct the lifting we will have to consider first the ori-
enting doubles (Xo,wo,co) and (Xé,né,cé) of X and X'. The projec-—
tions T XO + X and ﬂé: Xé + X' being local homeomorphisms the
orienting doubles have good lifting properties. For example we know
that a path can be lifted to the orienting double from any point lying
over its initial point and that the 1lifting is unique once the initial
point is fixed. Using this path 1lifting we can 1ift the homeomorphism

f: X > X' to a homeomorphism f: XO - Xé satisfying
™Mmof=Ffon .
o o

ie. F isa lifting of f. The lifting is not unique: oé of=*%fo 9
is also a lifting of f. These are the only homeomorphic liftings of f.
Note that the above construction can be carried out because f 1is a homeo-

morphism, and that it is not possible for only continuous mappings.
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Let f be a homeomorphic 1lifting of f to a mapping between the
orienting doubles. Clearly %(BXO) = axg. Since f o o, = cé o f,
defines a homeomorphism f: Xc > Xé of the corresponding complex doubles.
(Recall that Xc was obtained by gluing the symmetric points of BXO
together.) It satisfies

™mof="fo T,

i.e. it is a lifting of f to a mapping between the complex doubles.
N Ir f: X, > Xé is a homeomorphic 1ifting of f, then o' o f

= f 0 0 1is also one, and these are the only homeomorphic liftings
of f. Note that if we require the 1lifting to be only continuous,
there may be more of them.

Let (D,$) and (D,¢') be the universal covering surfaces of
Xc = D/G and Xé = D/G', respectively. A lifting f: X, > Xé of f
can be lifted to a homeomorphism ¥: DD satisfying fo ¢ =9¢" o %
And if 5: D~>D is a lifting of the mapping o' o f=7fo o, then
there exists a lifting o': D> D of o': X! > X! such that
% =5 o ¥

Let now R = (G,g) and R' = (G',g') be the reflection groups
corresponding to X and X', respectively. The above considerations
in conjunction with Section 2.3 yield the following result, where
8 =mo¢ and 6' =7' o ¢'.

Lemma 3.1. A homeomorphism f: X > X' admits a lifting to
a homeomorphism ¥: DD satisfying ©' o ¥=ro0o6. If g is an-

o 1.

other such lifting, then there exists an ré € R' such that % = ré
Conversely, any mapping g of that form is a lifting of f.

3.2. A lifting ¥: D>D of f has the property that it takes
R-equivalent points of D to R'-equivalent points. Conversely, any
mapping g: D + D with this property induces a mapping g: D/R » D/R',
and if E is continuous, g 1is as well and E is a lifting of g.
This observation leads to the following useful result.

Theorem 3.1. If X =D/R, then the Klein surface X* =
(¢ -D)/R s isomorphic with X.

Proof. The mepping z — 1/z maps D onto 6 - D and induces
an isomorphism between X and X*.

3.3. Consider a Beltrami differential u on a Klein surface
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X = D/R, where R = (G,g). u defines a Beltrami differential on D;
v . .. ;
we denote it by ﬁ. uw on D 1s a Beltrami differential of the group
R, i.e. it satisfies
NN 3g/dz
u= (1o g)Bg/Bz
for all g € G and
Y
~ v v, 30/9z
w=(uo 0%734——-
36/9z

v, . . . N
If p 1is a Beltrami differential of R = (G,0) and w: D -+ w(D)

N . . - .
a p-quasiconformal mapping, then w o g o w ! 1s conformal for each

N - . .
g €G, and wooow ! 1s anti-conformal. The elements wo gow ,

g € G, form a quasi-Fuchsian group G" which together with w o S o w-1

generates a group R" called a gquasi-reflection group. From the theory

of quasi-Fuchsian groups it is clear that w(D)/R® 1is a Klein surface
and that the mapping w: D + w(D) induces a p-quasiconformal mapping
D/R +~W(D)/Ru. These observations lead to the following version of
simultaneous uniformization of Klein surfaces.

Theorem 3.2. Let X and Y be topologically equivalent
compact Klein surfaces. Assume that g(X) > 1. Then there exists a
quasi-reflection group R acting in some domain B such that X = B/R
and Y = (€ - B)/R.

Proof. Since g(X) > 1 we can find a reflection group Ro such
that X = D/Ro. By Lemma 1.2 we can find a quasiconformal mapping
f: X > Y, let p be the Beltrami differential of f. Lift u to a
Beltrazi differential ﬁ of RO and continue it by AO Ep the whole @.
Then u 1is a Beltrami differential of RO also in € - D. Let w be
a ﬁ—quasiconformal mapping of the plane. Then R={woro w—1|r € RO}
is a quasireflection group; if B = @ - w(D), then X = B/R and

A hng .
Y = (C - B)/R. The theorem is proved.
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L. Homotopic mappings

. . . v
l.1. Consider non-classical Klein surfaces X = D/R, R = (G,0),

and Y = D/R', R' = (G',g‘), and a homeomorphism f: X - Y. Let T
Xc -> YC be a lifting of f to a mapping between the complex doubles,
and let further f: D> D be a lifting of £ (and of course of f).
Following the classical considerations we see that ¥ induces an iso-

A
morphism f: G - G' Dby the formula

A
¥og="*g) o %, g € G.

Consider the mapping ¥oo. It is a lifting of the mapping f o 0 =

o' o f. It follows that we can choose a generator G' of R' for which

n N '\:' Y
foo=0"of.

A
Hence the isomorphism f: G -+ G' can be extended to an isomorphism
A
f: R > R' such that for all r € R

y

A A
For=%r)of, ana £(5) =0

1
- . A . . .
The isomorphism f: R > R' 1is not uniquely determined by f. Let
§ = ré o ¥ be another lifting of f. Then for an r € R,
-1 n

A A
% or = ré otfor=roflr)of=1rof(r)o rb o g.

. A . .
Hence é defines an isomorphism g: R > R' satisfying

1

A
o f(r) o ry o, T € R,

A -— 1
glr) = ]

i.e. there exists an inner automorphism A of R' such that

A
(4.1) £=1ao0 f.

As in the case of Riemann surfaces we choose to call two isomor-—
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A A A A~ .
phisms f and g of R onto R' equivalent if g o f ! is an inner
automorphism of R'. The relation is an equivalence relation. It is

clear that all isomorphisms arising from one homeomorphism between the
corresponding Klein surfaces are equivalent.

We also have the following technical result.

Lemma 4.1, If f: X >X',i=0,1, are homeomorphisms in—
ducing equivalent isomorphisms R - R', then there exist liftings
%i: D > D of the mappings s i = 0,1, such that QO = ?1.

It is left to the patient reader to prove this.

L.2. Since we shall be interested in the compact case, we will,
from now on, always assume that Klein surfaces under consideration are
compact.

Let X and X' be compact and fi: X~>X',1i=0,1, be homeo-

. . . . . . Y
morphisms which induce equivalent isomorphisms R - R'. Let fO and
%1 be those liftings of fo and f1, respectively, which define the

A A
same isomorphism fO = f1 of R onto R'.

The element of length of the hyperbolic metric in the unit disc,
laz|/(1 - |z|2), is invariant under the elements of a reflection group
acting in D. Using this metric we define a homotopy between f. and

0
f. in the following way. Let =z € D, and choose a number t, 0 <t < 1.

1
Define %(z,t) as the point in D dividing the hyperbolic segment from
¥ (z) to ¥ (z) in the ratio t: (1-t). Then ¥: D x T » D, (z,t) »

0 ] 1 N o ] A
%(z,t), is a homotopy between fj and f . Let r € R. Since f (r) =

0 0
A
f,(r), it follows from the invariance of the hyperbolic metric that

%2r(z),t) = %O(r)(%(z,t)) for all z € D and for all t, 0 <t < 1.
This means that ¥ defines a continuous mapping F: X x I » X' with

" the property F o 8 =06"o %, where 6 denotes the projection D x I -
X x I and ©' the projection D - X'. Since fo(p) = F(p,0) and

f1(p) = F(p,1) for all p € X, £, and f, are homotopic. The homotopy

F  between fO and f1 has the groperty that each mapping F( ,t):
X > X' maps 98X into 3X'.

Hence we have proved that homeomorphisms fi’ i =0,1, which in-
duce equivalent isomorphisms between the corresponding reflection groups,
are homotopic. In order to prove the converse we need the following
result.

Lemma 4.2. Let X be a compact Klein surface for which

g(X) 2 2. If f: X ~>X is a homeomorphism which is homotopic to the
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identity mapping of X, then f can be lifted to a mapping T: X, > X,
which 1s homotopic to the identity mapping of X,

Proof. For the following details I am indebted to P. Tukia. Let
us consider the case where X 1is non-orientable. Let XO be the ori-
enting double of X. We can lift the mapping f: X > X to a mapping
£ Xo - Xo which is homotopic to the identity mapping of XO. If
BXO =0, XO = Xc’ and we have nothing to prove. Assume that BXO # 0.

We can find a discontinuous group GO, acting in D, whose region
of discontinuity is , for which XO =(Qn D)/GO. Let E=QND
and B = Q N 3D. The group GO is of the second kind, i.e. iti limit
set L = 39D - B 1is nowhere dense in 3D. Consider a lifting f: E = E
of f: Xo -> XO. We want to show that %: E > E admits a homeomorphic
extension to the whole D. 1In order to do this consider the mapping
@ = %]B. Let Py € B be fixed. The set 3D - {po} can be interpreted
as an interval and as such we can give an order in there. This order
induces an order in the set B - {p,.}. In the same way we can also
order the set B - {%(po)}. Since f: E~>E is a homeomorphism it
follows that ¢ = %]B either preserves or reverses the order. Since
L =3 - B does not contain intervals, it follows, in both cases, that
@ admits a homeomorphic extension 8 to a mapping of 9D. It is not
difficult to check now that setting %(p) = a(p) for all p € L we
get a homeomorphic extension of ¥ toa mapping of D. 1In the sequel
we shall denote this extended mapping also by ¥. This topological
result is due to P. Tukia ([15], Lemma 3).

Since f: XO > XO is homotopic to the identiti mappin% of Xo’
the above lifting can be chosen in such a way that fog = gof for all
g € G, (see [5], Theorem 6A). From this formula it follows that thew
fixed points of the non-identity elements of GO are left fixed by f.
Hence F keeps the limit set L of Go point-wise fixed.

We have assumed that g(X) 2 2. Hence the limit set of G, 2on-
tains more than two points. Let o be a component of B. Since f
agrees with the identity mapping on the limit set of GO, it follows
that % maps o onto itself. Hence we can use Earle's construction
(181) to find a homotopy F: X x I~>X between the identity mapping
of Xo and the mapping f: XO - XO, which satisfies the following con-—
ditions:

(i) f‘(BXO,t) <X, for all t, 0=t = 1.
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(ii) ﬁ(oo(p),t) = oo(i(p,t)), p € X_, where o, is the antianalytic
involution of X for which X = Xo/oo.

Recall now that Xc can be obtained from XO by means of gluing
the symmetric points of 90X together. Then we can deduce from (i) and
(ii) that F: X, x I > X induces a mapping F: X, x I >X, which is
a homotopy between the identity mapping of Xc and a lifting f of f.
This proves the lemma for a non-orientable X. The same argument can
be applied also to an orientable Klein surface.

Let fi: X->X',i=0,1, be homotopic homeomorphisms of compact
Klein surfaces. Assume that g(X) 2 2. Let fi: XC - Xé, i=0,1, be
liftings of the mappings f. and f.. Then f_1of is a 1lifting of

0 1 1 0

f:1ofo. By Lemma 4.2 we can choose the above 1liftings in a way which
makes %;10%0 homotopic to the identity mapping of Xc' Hence %O and

£ can be chosen to be homotopic. Let F Dbe a homotopy between £

1
and f, and let %O: D~>D be a lifting of f We can 1lift the

1

homotopy F toa homotopy between %O:

D-+D of f1. Using this homotopy and the discontinuity of the group

R' for which X' = D/R' we can show that %O and %1 define the same
A A

isomorphism fo = f1 of R onto R', where R 1is the reflection

group corresponding to X.

0
0° N
D > D and some lifting fT:

Collecting all the above results into a theorem we get the follow-
ing:

Theorem L4.1. Let X =D/R and X' = D/R' be compact
Klein surfaces. Assume that g(X) 2 2. Two homeomorphisms f.0 X > X!
i = 0,1, are homotopic if and only if they induce equivalent isomorphisms
of R onto R'.

L.3. For a later application it is convenient to express Theorem

4.2 in a more explicit form. Consider homotopic homeomorphisms f

0
and f1 between compact Klein surfaces X = D/R and X' = D/R',
~ ~ . . Y
R = (G,0), R' = (G',0"). By Theorem 4.1 we can choose liftings T
A A
DD and %‘1: D+D of fj sand f, for which f, = f,. Since X_

is compact the limit set of G 1is 9D, and we can again use a result

. . y
of Tukia ([15], Lemma 3) and continue the mappings f, and %1 to

homeomorphisms of D onto itself. Considering the fixed points of

y n
the elements of G we can show, as before, that fO and f1 must

agree on the limit set of G, i.e. they agree on dD.



M. Seppédléd 27

On the other hand, if ¥ ana %1 agree on 93D, they define

the same isomorphism of R ongo R'. Hence we have the following
result.

Theorem L4L.2. Let X =D/R and X' = D/R' be compact
Klein surfaces. Assume that g(X) 2 2. Two homeomorphisms £ X > X',
i = 0,1, are homotopic if and only if there exist liftings %i: D~+>D
of the mappings £ i = 0,1, which agree on 3D.

h.4. Theorem 4.2 has an interesting topological corollary.
Consider homeomorphisms fi: X+ X', 1i=0,1, of compact Klein surfaces
of genus at least 2. We have proved that if f and f are

0 1

homotopic, there exist homotopic 1liftings %O: Xc - Xé and 51: XC > Xé

of fo and f1. The converse is also true.

Lemma L.3. Assume that X and X' are compact Klein sur—
faces and that g(X) 2 2. Two homeomorphisms £ X X', i=0,1,
are homotopic If and only if there exist homotopic liftings £ X, > Xé,
i=0,1.

Proof. In view of Section 4.2 it suffices to show the "if"-part
of the lemma.

Assume that the liftings f.: X, > X! and %1: X, > X! are

0

homotopic. Then, by Theorem 4.2, there exist liftings %O: D->D

and %1: D-+D of %O and f1 which agree on 3D. Since these

mappings are also liftings of the mappings fi: X=+X',1=0,1,
we can again employ Theorem 4.2 to see that fo and f1 are homotopic.
Remar k. The above results are not true if g(X) = 0 or

g(X) = 1.

5. Spaces of Klein surfaces

5.1. Consider a fixed compact two-manifold Z, which may have
boundary. As was realized by N.L. Alling and N. Greenleaf ([L], Theorem
1.7.1), Z can be endowed with a dianalytic structure. This structure
is not unique. In this chapter we will give a parametrization for the
dianalytic structures of Z. We shall see that the classical methods
work on Klein surfaces. The cases g(Z) = 0 and g(Z) = 1 being well

understood ([4]1, 1.9) we consider only the general case g(Z) 2 2.
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Let K(Z) denote the set of dianalytic structures on Z. In
K(Z) we define the following relations:

(i) X, ~X, if the homotopy class of the identity mapping X, - X

1 2 1 2
contains an isomorphism of Klein surfaces.
(ii) X, ™ X, if there exists an isomorphism X, > X, which is homotopic

to the identity mapping of Z modulo 23Z (fixing 0Z point-wise).
It is clear that the relations ~ and =~ are equivalence relations.
Definition 5.1. T(2Z) = K(Z)/~ <s the reduced Teichmiller

space of 7, and T_(2) = K(Z)/~ <s the Bers' Teichmiller space of Z.

We shall hereBbe mainly interested in the reduced Teichmiiller space
of Z which will later be referred to as the Teichmiiller space of Z.
Our technique can be, however, applied also to TB(Z).

5.2. In T(Z) we define the Teichmiiller metric d in the usual

way: If X, € p, € T(z), i = 1,2, then define

1

(5.1) d(p1,p2) =3

inf {log K.|f € F},

where F denotes the class of quasiconformal mappings X1 - X2 homotopic
to the identity mapping of Z, and Kf denotes the maximal dilatation
of f.

In TB(Z) we define the Teichmiiller metric in the same way. The
class F consists then of those gquasiconformal mappings X1 - X2 which
are homotopic to the identity mapping modulo 9dZ.

The above definition does not depend on the choice of Klein sur-
faces representing the points P, and Dy- The fact that d is really
a metric can be proved exactly in the classical way.

5.3. As in the case of Riemann surfaces T(Z) with the metric
(5.1) is a manifold homeomorphic to a domain in a Euclidean space. To
prove this we will fix a point p = [X] € T(Z) and construct a local
variable about it which turns out to be a homeomorphism of T(Z) onto
a domain in a Euclidean space.

For our constructions it is convenient first to express T(Z) in
terms of Beltrami differentials on X. Let X1 and X2 be Klein sur-
faces in K(Z). Use Lemma 1.2 to find quasiconformal mappings fi: X -+ Xi’

i = 1,2, homotopic to the identity mapping. Let y denote the complex
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1
dilatation of fi. Then, by Theorem 1.2, Xi and X correspond to
the same point in T(Z), i = 1,2. Hence X, ~ X, if and only if
u u
X | ~X 2. In view of this observation T(Z) can be defined in terms
of Beltrami differentials of X as follows.
In the set B(X) of Beltrami differentials of X define the

relation ~ setting My~ My if the homotopy class of the identity

u n
mapping X T X 2 contains an isomorphism of Klein surfaces. Then ~

is clearly an equivalence relation in B(X). The quotient
T(Z,X) = B(X)/~

is called the Teichmiiller space of Z relative to X. The definition

of the Teichmiiller metric can be transformed into T(Z,X) and we get:

Lemma 5.1. The natural mapping T(Z) > T(Z2,X) <s an iso-
metric homeomorphism.

Let us call the point in T(Z,X) which is represented by 0, the
origin of T(Z,X). Consider a point p = [u] € T(Z,X). It is not dif-
ficult to verify that the mapping vy: I -~ T(Z,X), t » [tu], is a contin-
uous mapping with vy(0) = 0 and vy(1) = p. Hence T(Z,X) is connect-
ed. In the same way one can show that T(Z,X) is simply connected.
The details here are exactly as in the classical case.

5.4, To find a connection between the Teichmiiller space and the
space of quadratic differentials we can employ a classical method.

Since everything is well known in the classical case we will here
consider only non-classical Klein surfaces. We have previously assumed
that g(X) 2 2. Hence we can write X = D/R, where R = (G,0) is a
reflection group. Recall that the Beltrami differentials u € B(X) of
X can be interpreted as the Beltrami differentials ﬁ of the group
R in D.

For a Beltrami differential ﬁ of R in D 1let fu denote the
unique ﬁ—quasiconformal mapping of D onto itself which keeps 1,i,-1
fixed. We call fu the normalized ﬁ—quasiconformal mapping of D. The
following lemma is a corollary of Theorem 4.2.

Lemma 5.2. u, ~u,. if and only if £ |3D = £ |dD.
voe Hq Ho
Following Bers' construction we introduce now, for each

Beltrami differential 1 of R, the unique normalized quasiconformal
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A
mepping f" of C which has the complex dilatation ﬁ in D, is con-
A —
formal in D* = ¢ - D, and keeps 1,i,-1 fixed. Imitating the classi-

cal reasoning we get the following result from Lemma 5.2.

L .30 ~
emma 5.3 Hy Hy

5.5. For the reader's convenience we recall in this section some

. Hy s
1f and only ©f £ |D¥ = £ <|D*.

properties of Schwarzian derivatives.
Let f Dbe any locally schlicht meromorphic function which is
defined in a simply connected domain A. Then its Schwarzian derivative
S, = £m/p - 3 (£/50)?
f 2
is holomorphic in A.
By a direct computation one can check that Sf =0 if and only if
f 1is a Mdbius transformation. For the composite function we have
2

+ S .

(5.2) S = (8, 0 gle .

And for the function h, h(z) = f(zZ), we have

(5.3) 5,(2) = 8,(2).

If @ is holomorphic in D*, define

(5.1) ol = sup {]o(z)](|2]% - 1)°]z € D*},

and denote

H(D*)

{o|¢ holomorphic in D* and ||w|| < «}.

Then H(D*) with the norm (5.4) is a Banach space.

5.6. Let us return to the Teichmiiller space T(Z,X) of 2
relative to X = D/R. By Theorem 3.1, X = D¥/R. An element ¢ of
2

(

Do X) can be, in a natural way, interpreted as a holomorphic function

@ in D* satisfying
2
(5.5) 0= (9o glg'

for all g € G and
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(5.6) 0= (00 8)(35/32)°.
From the compactness of X it follows that ¢ € H(D*).

Conversely, any ¢ € H(D*) satisfying (5.5) and (5.6) arises
from a quadratic differential of X and is called a quadratic differ-—
ential of the group R. Denote the set of holomorphic quadratic dif-
ferentials of R Dy Di(R). Then Di(R) is a subspace of the Banach
space H(D*). If X is a non-classical Klein surface, then Di(R) is
a real Banach space; otherwise it is a complex Banach space.

Let % be a Beltrami differential of R in D. Then, by (5.2)

and (5.3), S € D2(R). Denote
ox ©

A(R) = {8 |¥ & Beltrami differential of R in D}.
| p*

Then A(R) < Di(R), and in view of Lemma 5.3 we obtain a bijective map-

ping

y: T(Z,X) > A(R), [ul »s .
£V | p*
It is well known that in the classical case ¢ 1is a homeomorphism onto
its image which is an open set in the Banach space of quadratic differ-
entials of X. We wish to prove that the same holds also in the non-
classical case.
5.7. Assume that Z 1is non-classical, i.e. Z 1s non-orientable
or has a non-empty boundary. For the topological surface Z we can,
of course, construct a complex double which is a triple (Zc,ﬂ,o) sat-
isfying the following conditions:
(1) Zc is an orientable two-manifold without boundary.
(ii)  The projection m: Zc + 7 is an unramified double covering map.
(iii) o: Zc > ZC is a sense reversing involution satisfying m = 1m o o.
Let (Zc,ﬂ,o) be fixed. Then any dianalytic structure X € XK(Z)
induces an analytic structure Xc on Zc such that (Xc,ﬂ,o) is the
complex double of the Klein surface X. In the sequel we shall assume
that all complex doubles of Klein surfaces X € K(Z) are obtained in
the above manner.

If X and X' represent the same point in T(Z), then there ex-
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ists an isomorphism f: X - X' which is homotopic to the identity
mapping of Z. By Lemma 4.3 f can be lifted to an isomorphism
£ Xc > Xé homotopic to the identity mapping of Zc' Hence Xc and
Xé correspond to the same point in T(Zc)' It follows that w*([X]) =
[Xc] defines a mapping w*: T(Z) - T(Zc).

To prove that w* is one-to—one choose two Klein surfaces X and
X' from K(Z), and assume that n*([X]) = 7w*([X']). This means that
XC ~ Xé. Hence there exists an isomorphism £ Xc -> Xé which is homo-
topic to the identity mapping of Zc' Since the involutions ¢ and
o' of the complex doubles Xc and Xé, refﬁectively, agree as mappings
of ZC, it follows that the isomorphism o' o f oo 1is also homotopic
to the identity mapping. Since the homotopy class of a homeomorphism
of compact Klein surfaces contains, by Theorem 4.2, at most one isomor-—

phism, it follows that c'—1 ofoo = f, i.e.

o' o f =t o O.

Hence f is a lifting of some isomorphism f: X > X' which is, by
Lemma 4.3, homotopic to the identity mapping of Z. This means that
m*: T(Z) > T(ZC) is one-to-one.

Let us prove now that w*: T(Z) - T(Zc) is isometric. To this
end choose two points [X] and [X'] from T(Z). Let (Xc,n,o) and
(Xé,ﬂ',c') again be the corresponding complex doubles. Denote by
dc([Xc],[Xé]) the distance of the point [Xc] from the point [Xé]
in T(ZC). Then clearly

aclx1,x'1) z dc([xc]’[xé])~

By the Teichmiiller extremal mapping theorem we can find a unique quasicon-

formal mapping £ Xc > Xé with the smallest maximal dilatation K% in the
homotopy class of the identity mapping. Then dc([XC],[Xé]) = %‘1og Kz.

Consider the mapping f' = o o f o o: Xc - Xé. Since ¢ and
o' coincide as mappings of Zc’ £ is homotopic to the identity map-
ping. Since K%,
extremal mapping that f' = f, i.e.

= K%, it follows from the uniqueness of the Teichmiiller

foo=o0¢"o f.
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Hence f is a lifting of some quasiconformal mapping f: X > X' which

is, by Lemma 4.3, homotopic to the identity mapping. This shows that
|l < 1
a(lx1,[x'1) = a ([x 1,0x 1).

Hence we have shown that d([X],[X']) = dc([XC],[Xé]), i.e. m* is
isometric.

Consider again the topological complex double (Zc,ﬂ,o) of Z.
The automorphism o of Z, induces a mapping o*: K(Zc) > K(Zc) in
the following way. If {(Ui,zi)]i € I} 1is a dianalytic atlas of 2
corresponding to the dianalytic structure Y of Zc’ then o*(Y) is
the dianalytic structure of Z, defined by the atlas {(0—1(Ui),zi o o)

i € I}.

It is easy to verify that the above mapping o*: K(Zc) > K(Zc)
induces an involution o¥*: T(ZC) > T(ZC). And we have the following
result.

Theorem 5.1. T(Z) <s homeomorphic to =*(T(Z)), and
m*(T(z)) = {p € T(ZC)IO*(p) = pl.

Proof. By previous considerations n* is a homeomorphism onto
its image. Hence the first part of the theorem is already proved.

Let us denote the fixed-point set of the mapping o* of T(Zc)
by TO(ZC) and prove that m*(T(Z)) = TO(ZC). Note first that the
inclusion w*(T(Z)) < TO(ZC) follows immediately from the definitions.

To prove the converse inclusion it is convenient to consider the spaces
7(z,X) and T(ZC,XC) instead of the spaces T(Z) and T(ZC). Here
Xc is the complex double of the Klein surface X.

Assume that o*([Y]) = [Y] € T(ZC). Let a: X, > Y be the unique
quasiconformal mapping which is homotopic to the identity mapping of Zc
and has the smallest maximal dilatation in its homotopy class. Let wu
be the complex dilatation of «. Then the lifting ﬁ of u 1is a Beltrami
differential of the covering group G corresponding to XC. Let R = (G,g)
be the reflection group for which X = D/R. Our theorem is proved if we
succeed in showing that ﬁ is a Beltrami differential of R in D.

Since o*([Y]) = [Y], there exists an isomorphism g: Y - o*(Y)
which is homotopic to the identity mapping of Zc' Note that the map-
ping o: o*(Y) > Y is, by definition, an isomorphism. We obtain the

following diagram
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where f = 0 o g 1is an isomorphism. Since the mapping g is homotopic
to the identity mapping of Zc, f oa is homotopic to a o o. On the
other hand, f o o« and o o ¢ are both extremal mappings in their
homotopy class. (This follows from the facts that o is the Teichmiiller
extremal mapping and f and o are isomorphisms of Klein surfaces.)
Hence they must agree, i.e. the above diagram is commutative. It follows
that we can 1ift the mappings o, ¢ and f +to mappings of D for which

the equation

n N ny
ooo0=1%fo

Qe

is satisfied. From this equation we deduce that the complex dilatation

N N e e
u of o satisfies

=2

39/3z

35/3z

Hence ﬁ is a Beltrami differential of R = (G,g) in D. This proves
the theorem.

5.8. Let X = D/R, R = (G,0), and X_ = D/G as before. Repeat-

ing the construction of 5.6 we obtain a mapping
v, T(ZC,XC) > A(G).
Here A(G) is defined as A(R) 1in 5.6. The classical theory tells us

that A(G) is open in DE(G) end that y_ is a homeomorphism.

Since G <R, Di(R) c Di(G), and we obtain a commutative diagram

v

(¢}
(5.7) T(Zc’xc) —— > A(G)

m* incl.

7(%,X) ———— A(R)
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As was noted in Section 1.5, the involution ¢ of XC defines an in-—

volution o* of Di(XC) = Di(G). A computation shows that the diagram
/
(5.8) 2z %) ——e s p2(c)
' c’c o
o* o*
1]
c 2
_—
T(Zc’Xc) DO(G)

is commutative. Considering the fixed point sets of the mappings o0* we
obtain then,by Theorem 5.1,the following formula:

(5.9) A(R) = a(G) n Di(R).

Since, by the classical result, A(G) 1is open in Di(G), and since

2

2(R) c DO(G), A(R) is, by (5.9) open in Di(R). The fact that ¢ is

D
aohomeomorphism follows from the commutative diagram (5.7) and from the
facts that 7n*: T(Z) - n*(T(Z)) and wc are homeomorphisms.

5.9. In Di(R) we have defined the norm (5.4). On the other
hand, by Theorem 1.1, Di(X) = Di(R) is a (3g(X)-3)-dimensional real
vector space. Thus, in Di(R) we have also a Euclidean metric, which
defines the same topology as the norm (5.4). Hence we get from the
preceding considerations in conjunction with the classical results:

Theorem 5.2. Let Z be a compact topological two-mantifold
with g(z) 2 2. The reduced Teichmiiller space T(Z) of 7 <s a mani-
fold homeomorphic to an open simply comnected subset of a Euclidean space.
If 7 <is orientable and does not have boundary, then dim T(z) =
3g(2)-3, otherwise dimg T(Z) = 3g(z)-3.

5.10. Assume that Z 1is not classical. It is well-known that
T(Zc) can be endowed with a natural complex structure such that wc is
a biholomorphic embedding of T(ZC) into the complex Banach space Di(G)
([7], Theorem I).

2

2(G) - DO(G) in

It is easy to check that the involution o%*: DO
diagram (5.8) is a conjugate-linear mapping. Hence it follows from (5.8)
that o*: T(Zc’Xc) > T(ZC,XC) is an anti-analytic involution. Thus
m*(T(Z)), being the fixed point locus of o*, is a real analytic submani-

fold of T(Zc). (The real analytic structure of m*(T(Z)) can be defined
by the real analytic atlas {(ﬂ*(T(Z)),wc)}.) Then we can transform the
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real analytic structure of m*(T(Z)) into a real analytic structure of
T(Z) wusing the mapping m*. The atlas {(T(Z),y)} is a real analytic
atlas of the above structure. Finally, it is clear that the mapping
m*: T(Z) -+ T(Zc) is a real analytic immersion.

Remark 1. Let H be the group generated by the involution
o: Zc - Zc' Then the space 7*(T(Z)) 1is the relative Teichmilller space
T(ZC,H) of Kuribayashi studied by Earle in [9].

Remark 2. Our methods could also be applied to the Bers'
Teichmiller space TB(Z) of a non-orientable Z. The result seems to

be that TB(Z) can be embedded into T (ZO) as a real analytic sub-

B
manifold. Here Zo is the orientable double of the topological surface

Z.
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