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INTRODUCTION

The concept of parliamentary voting procedure is used here to denote the 
social decision method whereby the socially best alternatives are determined 
on the basis of the pairwise comparisons of alternatives so that the winner 
of each comparison is confronted with the next one in the sequence of 
alternatives and the socially best alternative is the winner of the final com
parison. This method is widely used in contemporary parliaments. In this 
article we shall first take a look at some theoretical results that seem to cast 
doubt upon the validity of this method as a reasonable way of aggregating 
individual preferences. Thereafter we shall investigate some alternative voting 
procedures with a view to determining to what extent, if any, they are exempt 
from the difficulties exhibited by the parliamentary voting procedure. A t first 
we shall restrict ourselves to binary procedures, i.e. those based on the pairwise 
comparisons of alternatives. Later on also other types of procedures w ill be 
considered.

A major restriction is the assumption of fixed preferences of voters over 
the alternatives. This assumption is almost universally adopted in social choice 
literature although its plausibility is questionable particularly in case* where 
a relatively small number of voters make collective decisions frequently and 
thus learn to adapt their preferences to those of the others. We are, however, 
in this article dealing with institutions of making social choices. The focus 
on institutions instead of specific voting situations lends the assumption o f 
fixed preferences more plausibility than is the case when given voting bodies 
and ballot sequences are considered. In designing viable institutions which 
purport to be general — i.e. applicable in indef inite circumstances and voting 
bodies — one cannot rely on specific learning mechanism assumptions although 
the existence of such mechanisms cannot be denied. Taking particular mech
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anisms into account would anyhow make it exceedingly d ifficu lt to say 
anything general about voting procedures. Hence we shall make the fixed 
preference assumption commonly adopted in social choice theory.

THE PROBLEM OF AN EMPTY CORE

The phenomenon called the Condorcet paradox has been known for a 
long time (e.g. Riker & Ordershook 1973, 84). We shall not dwell on that 
phenomenon here except to point out that in essence the paradox consists of 
the fact that from a set of individual weak preference orderings (i.e. sym
metric, transitive and complete) one may in some circumstances end up with 
intransitive social preference relations when the parliamentary voting pro
cedure w ith a simple majority rule is being used. Since such majority cycles 
are generally deemed undesirable, efforts have been made to place restrictions 
on the configuration of individual preference orderings so as to exclude the 
possibility of majority cycles. The best-known of them is the requirement of 
single-peakedness proposed by Black (1958). We know now, however, that in 
addition to the fact that what is involved in »forcing» any given individual 
preference configuration to be single-peaked is the imposition upon the 
voting body of a consent concerning the valuation o f some of the alternatives, 
the single-peakedness condition is extremely unlikely to hold in policy-spaces 
of more than one dimension if individual preferences are convex (Kramer 
1973). On the other hand, the single-peakedness condition is not necessary 
for the acyclicity of the social preference relation even though it is a sufficient 
condition for it (see Schofield 1978a).

While the failure of transitivity of the social preference relation may be 
undesirable, it may still happen that what one is interested in is not the social 
preference ordering of all alternatives, but just a choice of a subset of »best» 
ones. When the simple majority rule is applied, the core of a voting game is 
defined as follows: an alternative x (E X, the set of alternatives) belongs to 
the core if and only if there is no y (E X) such that y defeats x by a simple 
majority. Now when the parliamentary voting procedure is resorted to, the 
core alternatives obviously win if everyone votes according to his/her true 
preferences. We observe that the Condorcet winner — i.e. the alternative that 
defeats all the others by a simple majority in pairwise comparisons — always 
belongs to the core.

The problem with the core as a solution concept is that it is often empty. 
Indeed, the results of Schofield show that in more than three-dimensional 
policy-spaces, the core is generically empty (Schofield 1978b). One is, there
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fore, led to ask what happens when the core is empty. Obviously there is 
then no natural equilibrium outcome, i.e. such an outcome that when it is 
proposed, it can be defeated by no other proposal. But if there is some subset 
of »reasonable» outcomes in which the social outcome can always be expected 
to be found (provided the voters are rational), then the absence of the core 
may not be too much of a problem. The results discussed in the next section, 
however, render this hope completely unfounded.

McKELVEY'S THEOREM

Suppose that there are n voters in a policy-space and that each voter has 
an optimum point in the space. Suppose, furthermore, that each voter's 
preference is Euclidean in the sense that the u tility  of any point x in the 
space is a monotonically decreasing function of the distance between x and 
the voter's optimum x 1. The theorem proven by McKe/vey (1976) states that 
under these assumptions and in the absence of a core, it is possible to build an 
agenda such that starting from an arbitrary point x0 in the space one can 
make another arbitrary point y0 the winner by the parliamentary voting 
procedure. In other words, under the above assumptions the agenda-builder 
can completely control the outcome of the parliamentary voting procedure 
regardless of the configuration of the individual optima in the space as long 
as the condition of an empty core is fu lfilled (as is generically the case). 
And yet the winner of each comparison is determined by a simple majority. 
Hence, the parliamentary voting procedure cannot under previous assumptions 
guarantee a non-arbitrary outcome when the simple majority rule is applied 
at each stage. Of course, when a Condorcet winner or, more generally, a core 
exists, we can predict that it is also the social outcome when the procedure 
is adopted. As was pointed out, however, it is generically the case that the 
core is empty in the higher dimensions.

How restrictive, then, are the asumptions of McKelvey's theorem? Prima 
facie, the spatial model itself may seem unrealistic in as far as it may be 
d ifficu lt to see how a typical political decision making situation could be 
conceived o f as taking place in multi-dimensional real space. Indeed, it may 
be extremely d ifficu lt to locate the decision makers, parties, individuals or 
whatever, in the space in an unambiguous fashion. Moreover, different 
analysts might locate the voters differently even when there is agreement 
concerning the meaning of the dimensions. These observations apparently 
cast doubt upon the real worJd relevance of the theorem. Upon closer inspect
ion, however, they are beside the point because the theorem is a possibility
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result and not a prediction one. Furthermore, for its »application» one does 
not need to know the exact locations of the voters in the space. Indeed, one 
does not even need to know what the dimensions stand for. A ll one needs 
are the assumptions
1) that there are several dimensions along which the optima of the voters 

differ,
2) that the ensuing configuration of optima does not have a core, and
3) that the voters in this space calculate in Euclidean fashion.

Assumption 1) certainly is not very restrictive. Assumption 2) describes
a typical situation in higher dimensional spaces. Assumption 3), however, 
needs closer scrutiny.

RELAXING THE RESTRICTIONS ON PREFERENCES

In order to prove theorems about collective decisions in spatial models, 
some assumptions are needed concerning the voter preferences in the policy 
space. One assumption which is usually made is that the loss functions of 
the voters monotonically increase with the distance from the optima. The 
distance, in turn, can be measured by means of several norms that have this 
property. In McKelvey's theorem the Euclidean norm is used. This is a severe 
restriction upon the applicability of the theorem because it can be shown that 
this assumption implies a certain degree of consensus among the voters. 
Specifically, if the voter preferences can be represented in the Euclidean 
fashion in a Rem-space, it follows that along each of the dimensions the 
preferences are single-peaked. This, in turn, implies that the voters are un
animous that certain alternatives are not the worst ones, viz. those near the 
median of the dimension. Thus, the assumption restricts the domain of the 
theorem to fairly consensual voting bodies only. Of course, one should bear 
in mind the nature of the theorem: it says that the majority rule is very 
irregular when the core is empty. If one of the assumptions of the theorem 
presupposes a given degree of consensus, then one might expect that the 
arbitrariness of the majority rule holds, a fortio ri, in voting bodies with a 
lesser degree of consensus. Without further ado this conjecture is, however, 
little  more than a guess.

In a recent paper McKelvey (1979) has proven that the arbitrariness of the 
majority rule does not vanish when the Euclidean loss function assumption 
is dropped. Indeed, even before that paper Cohen (1977) was able to show 
that McKelvey's theorem is also valid when the indifference curves of the 
voters are elliptic instead of circular. In terms of the degree of consensus



85

required, Cohen's assumption is no less stringent than McKelvey's original 
one because no matter which specific convex form the indifference curves 
have, the preference configuration remains dimension-wise single-peaked as 
long as the preferences are convex.

In McKelvey's new theorem no convexity assumption is made. The only 
restrictions on preferences are
(i) that the individual preferences have continuous u tility  representation, 

and
(ii) that the voters have no areas of indifference, i.e. the u tility  functions 

are not »flat» anywhere in the policy space.
(i) means that for each voter i the following must hold : Vx, y E Rem : x R y 
if and only if u. (x) >  u. (y), where u. denotes i's u tility  function and FT is 
i's weak preference relation. The new theorem differs from the earlier one 
in its method and its strategy of proof: McKelvey now proves that under the 
above conditions (and two other very mild ones) the frontier F of the set of 
points reachable from any given x via the simple majority rule is
(a) either empty, or
(b) very restrictive symmetry conditions must hold with respect to in

dividual preferences at F.
The possibility (b) roughly means that almost always the possibility (a) 

materializes, (a) in turn, is the case whenever either there is a nonempty core 
or the points reachable from an arbitrary x f il l the entire policy space. The 
latter alternative, of course, means that any point y can be reached from  an 
arbitrary x via the majority rule.

One may note, however, that McKelvey's new result applies to infinite 
alternative spaces only (e.g. Rem-space). This, in conjunction with the require
ment that there be no fla t areas in the individuals' u tility  functions, may seem 
to restrict its real world validity. Indeed, some experimental results could be 
made intelligible if one assumed that individuals have indifference areas 
instead of curves (see Fiorina & Plott 1978 and Nurmi 1981a). But this 
observation is not really pertinent if one looks at McKelvey's results with a 
view to evaluating a social institution, viz. the simple majority rule. Surely, 
we would wish our institutions to be well-behaved when perfectly rational 
individuals are involved, even though perfect rationality rarely characterizes 
the real world decision makers.

In conclusion, then, things look pretty bad for the parliamentary voting 
procedure with a simple majority rule. In particular, there seems to be no way 
in which the procedure itself could guarantee that the individual preferences 
have any significance in the determination of social outcomes. In short, the 
method is utterly insensitive to individual preferences.
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SUPPORTING SIZE DECISION SCHEMES

In this section I shall discuss the concept of the supporting size decision 
scheme (SSDS) following Barbera (1979) and, thereafter, relate this concept 
to a particular binary voting procedure.

Given a fixed set of alternatives X and the set P of strict preference rela
tions of the n individuals, a scheme is defined to be a function from the set of
preference relation n-tuples to the measures m over X such that 2  m(x) = k

x^x
(constant). When k = 1, the scheme is called a decision scheme.'Intuitively, 
a decision scheme is a rule which indicates the probability of each alternative 
being chosen as the socially best alternative given a certain configuration of 
individual preferences. If and only if such a scheme has the following ad
ditional properties is it called a SSDS:
(1) there exists a n + 1 vector of real numbers

A  = < V  an —1 .......... a0> SUch th 3 t 3n >  an -1  >  ■ ■ ■ >  V
(2) there exists a constant c such that V j <  -  : a. + a . = c, and

2 J n — J
(3) the score s. of each x. E X is obtained as follows:

si = Xte x  - | x . ) a9 (xi ' V p)

where g(x. xt , P) denotes the number of those individuals who prefer x. to xt 
when the preference configuration is P. Intuitively, the score is obtained by 
confronting x. with each of the other alternatives in X and counting for each 
pairwise comparison the number r of those individuals preferring x. to the 
other alternative. This number r is then used to identify the corresponding 
ar in A. The sum of the af 's thus obtained is the score of x..

Now, from the set of m alternatives one can choose m(m— 1) /2 different 
pairs. It follows then in virtue of condition (2) above that for n/2 <  j <  n: 
a. + an_. = 2/m(m— 1) if the scheme is SSDS.

SSDS has some very nice properties (see Barbera 1979). In particular, it 
can be shown to be anonymous, strategy-proof and alternative-independent. 
Indeed, any SSDS has these properties and conversely any scheme that has 
these properties in a SSDS. Anonymity and neutrality are generally deemed 
good properties (see, however, Plott (1976, 559—560) on symmetry, i.e. 
neutrality). Alternative-independence means, roughly, the following. Consider 
four strict preference configurations P1, P2, P3 and P4 . Each configuration 
has the property that alternatives x1 and x2 are adjacent in every individual's 
preference ranking. Suppose that for each individual i

X1 Pi x2 ,ff X1 Pf  x2 and X1 Pf  x2 iff X1 pf  x2 *
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The scheme is alternative-independent exactly when under these circumstances«I
the change in x /s  probability of being chosen that occurs when P is changed 
to P equals x 1 's probability change when P changes into P . In other words, 
in probability changes the rank order of both x 1 and x2 with respect to 
other alternatives does not count, if the scheme is alternative-independent. 
By and large, alternative independence is also a nice property (see, however, 
Riker & Ordeshook (1973, 109-114, for discussion) although it explicitly 
rules out the effects of the preference intensity differences on social choice.

Strategy-proofness is defined by means of manipulability as follows: let 
R = (R1, . . . , Rj, . . . , Rn) be a n-typle of weak preference relations. Let F 
be a resolute social choice function F:Rn -*■ A where A is the set of one 
element subsets of X and Rn of course the set of all preference n-tuples. 
R is manipulate by the voter i at R if i strictly prefers F(R') to F(R) where 
R' = (R1 , . . . , R'j , . . . ,  Rn), i.e. R' differs from R only with respect to i's 
preference relation (see, e.g. Gärdenfors 1977). Now, F is strategy-proof if it 
is manipulate by no i at any preference configuration. In other words, if 
social choice function is strategy-proof, then it is rational for each voter to 
vote sincerely, that is, according to his/her true preference.

It is often argued that the social choice function should be strategy-proof. 
Even though this is a nice property, it is perhaps not entirely immoral to 
advocate social choice functions lacking this property as long as their manipul
ability is known to each voter. Be that as it may, the Gibbard-Satterthwaite 
theorem is somewhat disturbing in stating that every strategy-proof resolute 
social choice function is dictatorial if the range of F consists of at least three 
different alternatives (Gibbard 1973; Satterthwaite 1975). In other words, 
if one wants a resolute social choice function, then one cannot get a non- 
dictatorial procedure.

But, of course, dropping the resoluteness property is a way out of this 
d ifficulty. Thus, Barbera's theorem on the properties of SSDS shows that 
there is a trade-off between resoluteness and strategy-proofness. How high, 
then, is the price paid for strategy-proofness, one could ask. The answer is 
simple: SSDS produces probability distributions over alternatives instead of 
single alternatives. The problem that remains is to relate the probabilities with 
preferences so as to be able to say, e.g. that the most probable alternatives 
are most preferred by the voting body. One could th ink of circumventing the 
problem by resorting to random devices. Thereby one could guarantee that 
the procedure is sensitive to individual preferences in the long run. Perhaps 
this is the only relevant consideration in the institutional design, but one 
should pay due attention to the fact that in individual cases, i.e. in specific 
decision making situations, the procedure can be entirely unresponsive to
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individual preferences. Consequently, it would be d ifficu lt to apply e.g. in 
electing public officials let alone presidents. Let us therefore consider a pro
cedure that bears some resemblance to SSDS's but does not end up with 
probability distributions. It will turn out that the price at which the non- 
random nature is bought is high indeed.

THE M A XIM IN  SUPPORTSET

Suppose that the alternative set X is fin ite and of cardinality m. Then we 
could form a mxm matrix [r..] where r.. denotes the degree to which Xj is 
preferred to x., with ^j = 1 indicating a definite preference of x{ over Xj, 
r5j = y2 indifference and r^ = 0 a definite preference of Xj over Xj (see, Bezdek 
et al. 1978; Nurmi 1981b). Let the matrix be formed by performing pairwise 
comparisons between all pairs of alternatives (xjf x.) so that

r.. = 1/n 2  bk., for i ^  j, r.. = 1, for i = j,
ij k = l  ij ij '

where bk. = 1 if the voter k prefers x. to x. and bk. = 0, otherwise.

Now, Skala (1978) has shown that the [r..] matrix interpreted as the social 
preference relation is
(1) pseudo-transitive in the sense that r^ + rjh — K  rjh ,
(2) pseudo-asymmetric in the sense that r^ + r^ <  1, and
(3) irreflexive.

Skala, moreover, shows that the conditions of the Arrow  Impossibility 
Theorem are consistent if we are satisfied with the social preference relation 
that has the properties (1)—(3).

But very few are satisfied with the above type of social preference relation 
because it gives no clue in general as to how to make social choices. I have 
elsewhere proposed a procedure that uses the above [r^ ] matrix as input and 
identifies a non-empty subset of X as the set of socially best alternatives 
(Nurmi 1981b). In the present context I shall somewhat modify this pro
cedure. Before going into that, let us observe that the [r^ ] matrix can always 
be transformed into a SSDS by simply defining the entries of the matrix

The scores of the alternatives could, then, be computed as
m

= 2  
j= l

2

i = 1

m
2
j= i

This way of defining the scores guarantees that the procedure is a SSDS 
(cf. the definition above). Hence, if we are satisfied with a procedure resulting
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in a probability distribution over alternatives, we could resort to this method 
of defining the scores. However, if random processes cannot be used, there is 
no guidance as to which alternatives are socially best. In order to overcome 
this problem we define for each x. E  X:

v(x ) = min r i i= j. 
j 'J

Now, we say that xg belongs to set XM of maximin support iff

v(x ) = max min r... (cf. Kramer 1977). 
s j j 'J

The procedure whereby XM is used to determine the socially best out
comes has several properties to recommend it.

Proposition 1. The maximin method is decisive in the sense that for all 
n-tuples of individual preferences, it yields a nonempty set of 
social outcomes.
This can be seen by noticing that on each row of the [r..] 
matrix there is a minimum entry.

Proposition 2. The method chooses a Condorcet winner if one exists.

Proposition 3. The method chooses a core outcome if one exists.
Proof. Since Proposition 3 implies Proposition 2, we shall consider

Proposition 3 only. Suppose there is a core alternative xk . It 
follows then that (1) 3 x E  X: x r(M) xk where r(M) means 
that the element on the left side defeats by a simple majority 
the element of the right side. On the other hand, (2) Vxj =£ 
xk 3 x E  X such that x r(M) Xj. Now (1) is equivalent to the 
following: m.in rkj >  n/2. (2), on the other hand is equivalent 
to the following: m.in r.. <  n/2. That is, xk E  X M and x. ?  XM. 
Q.E.D. J ,J

Along with these obviously nice properties the maximin method has many 
undesirable ones. The first is inconsistency. The consistency of a procedure 
is defined as follows (see Young 1974; Mueller 1979, 62). Let there be two 
voting bodies N1 and N2 which make an independent social choice according 
to method K from the set X. Let the choice of the first body be X 1 and the 
choice of the second one X2- Suppose that X 1 O X2 =£ 0. If the choice of 
N^jU N2 also using K is identical with X 1 n  X2, the procedure is said to be 
consistent.

Although the consistency property in this sense would undoubtedly be a 
nice theoretical property for a collective decision-making procedure, it is not 
essential for a social institution with a fixed number of members. After all, it
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is known that in real-world decision making bodies, the entry of new members 
can sometimes increase the voting power of the old members as measured by 
power indices (see, Brams & Affuso 1976). Inconsistency is an analogous 
»paradox» of the maximin rule. Not all procedures are, of course, inconsistent. 
For instance, the Borda count is a consistent method.

Proposition 4. The maximin method is inconsistent. 
Proof. By way of a counterexample. Let the preference profile of

group N1 over the set X = |  x 1, x2 , x3, x4 1 be the following:

person 1 person 2 person 3

x i X4 X2

X3 X1 X3

X2 X3 X4

X4 X2 X1

and for group N2 the following (the numbers refer to persons):

1 and 2 3 4 5 6 7

X1 X3 X2 X4 X4 X4

X2 X4 X3 X3 X3 x2

X3 X1 X1 X2 X1 X1

X4 X2 X4 X1 x2 X3

The matrix of pairwise comparisons is then the following for

N1 :

X1 X2 X3 X4 min

X1 - 2 2 1 1

X2 1 - 1 2 1

X3 1 2 - 2 1

X4 2 1 1 — 1
and for N2

X1 X2 X3 X4 min

x i - 4 3 3 3

X2 3 - 4 3 3

X3 4 3 - 4 3

X4 4 4 3 - 3
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N /s choice set X 1 is then i  x 1,r X 9 , X , x l  and N9's choice set
x 2 = | x 1, x2, x3, x4 j- as well. However, when the groups are
combined, the pairwise comparison matrix is the following:

_
x X

to X3 x4 min

x i 6 5 4 4

X2 4 5 5 4

x3 5 5 - 6 5

X4 6 5 4 4

The choice set of N is then x3, thus showing that the maximin 
method is inconsistent. Q.E.D.

The social choice method has the cancellation property if whenever for 
any n-tuple of preference relations over X and for every pair (xj ( x . ) E X x X ,  
the number of voters preferring x. to x. equals the number of voters preferring 
x. to x., then the social choice is X. The following proposition is obvious.

Proposition 5. The maximin method has the cancellation property, if no 
abstentions are allowed.

Another consistency-type property that characterizes some procedures is 
called the weak axiom of revealed preference (WARP). Suppose that X ' C X  
and that the preference configuration of the n voters is the same when the 
choice is made from X' as when it is made from X. Denote by A (B, respect
ively) the choice set when X (X') is considered. Now, if X' O A =£ 0 implies 
{ x l x G X '  and x G a | = B, then the procedure satisfies WARP.

We noticed that the maximin method does not satisfy the first type of 
consistency. That it does not satisfy WARP either can be seen from the 
following.

Proposition 6. The maximin method does not satisfy WARP.
Proof. Again by way of a counterexample. Consider the following

preference profile over X = |x , y, z j- :

1 2 3
x z y
y x Z

Z y  X

The choice set is obviously j  x, y, zj. as every alternative gets 
the minimum of 1 vote in pairwise comparisons. Consider now 
the subset X' = jx ,  y |  of X. The maximin winner of this sub
set is obviously x, while the intersection of X' and the choice
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set of X is jx ,  y j. . Hence WARP is violated. Q.E.D.

Clearly the minimum number of votes a given alternative gets when it is 
confronted with all other alternatives depends on the entire set of alternatives. 
Therefore, if some alternatives are infeasible, their removal from consideration 
can change the choice set under the maximin method. Thus, whether or not 
an alternative is chosen depends partly on what other alternatives are avail
able. The following expresses this property of the maximin method (see Plott 
1976, 518).

Proposition 7. The maximin method violates the value/feasibility separation.

One further consistency-related property should be mentioned, viz. path- 
independence. Let R be a fixed preference profile. We denote by C(X, R) the 
social choice set resulting from  the application of a fixed voting procedure to 
the set X of alternatives, when R is the preference profile. If now for all parti
tionings X r  X2 of X: C(X, R) = C (C(X1, R)UX2, R), then the procedure 
which realizes C is path-independent. In other words, if the social choice set 
remains invariant under various partitionings of the alternative set, then the 
procedure is path-independent.

Proposition 8. The maximin method is not path-independent.This proposition 
has been discussed elsewhere (Nurmi 1981c).

We conclude this section with the following propositions.

Proposition 9. The maximin method is manipulable.
Proof. Consider the following preference profile over X = -jx, y, z, vj

1 2 3 4
X y X V

y z y z
z X z X

V V V y

The pairwise comparison matrix is then the following:

X y z V min
X — 3 2 3 2
y 1 — 3 3 1
z 2 1 - 3 1
V 1 1 1 - 1

The maximin choice consists of x only. By misrepresenting
his/her preferences as zyxv instead o f yzxv, person 2 can bring 
about the following matrix:



93

X y z V m in

— 3 2 3 2
1 - 2 3 1

2 2 — 3 2
1 1 1 _ 1

Now the choice is jx ,  z j- , clearly a preferable outcome for 
person 2. (We shall return to this assumption of preference 
shortly). Hence, by misrepresenting his/her preferences a voter 
can bring about a better outcome than by voting sincerely. 
Q.E.D.

Now manipulability is definitely not a desirable property of a voting pro
cedure, but it seems that it characterizes all voting systems currently in use. 
A more fatal flaw of the maximin method is the following.

Proposition 10. The maximin method can choose a Condorcet-losing alter
native.

In other words, in some cases where an alternative can be found that 
would be defeated in pairwise comparisons by all the other alternatives, the 
maximin method would yet choose this alternative. This can be seen from the 
following example.

person 1 person 2 person 3 The pairwise comparisons:
X z y X y z V min
V V z X — 1 1 1 1
y y V y 2 - 2 1 1
z X X z 2 1 — 2 1

V 2 2 1 — 1
Thus, x which is the Condorcet-loser, is chosen along with the other alternat
ives.

OTHER BINARY PROCEDURES

It seems that when trying to avoid the systematic use o f random devices 
in making social choices we have to pay a high price at least as far as the 
maximin method is concerned: it does away w ith lotteries but ends up w ith 
other difficulties as shown in the above propositions.

By and large the binary methods — i.e. methods based on the pairwise 
comparisons of alternatives — do rather badly w ith respect to choice set in
variance criteria (WARP, consistency, path-independence). Their strong points
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are the Condorcet-criteria. Thus, for example, the parliamentary voting 
procedure chooses a Condorcet winner when one exists and never chooses a 
Condorcet loser. In terms o f these two Condorcet criteria the parliamentary 
voting procedure dominates the maximin method. However, the parliamentary 
voting procedure is not Pareto-optimal whereas the maximin method is, as has 
been argued in Nurmi (1981c). These remarks are based on research reported 
at greater length elsewhere (Nurmi 1983; see also Richelson 1979 and Straff in 
1981). Hence it seems that there is not much point in switching from the 
parliamentary voting procedure to the maximin method: one would gain 
Pareto-optimality but take the risk of sometimes choosing a Condorcet-loser. 
Quite a few people would agree that the.switch is not worth making.

Would it then be possible to find a method that is both Pareto-optimal and 
never chooses a Condorcet-loser and, moreover, has the good properties that 
the maximin method and the parliamentary voting procedure have in com
mon, viz. the choice of the Condorcet-winner whenever one exists and mono
tonicity (i.e. the property that if an alternative wins when a given procedure 
is used, and then some individuals change their minds so as to lif t  the winner 
higher in their preference orders, then the same alternative would still win if 
no other changes are made in the preference orders)? Yes, it would. It is a 
procedure designed by Copeland. The method is based on a scoring function. 
The Co pel and-sco re of an alternative Xj is determined by taking the number 
of alternatives that Xj defeats and subtracting from this number the number 
of those alternatives that defeat Xj. The alternative with the largest score is 
the Copeland-winner.

ONE-STAGE PROCEDURES

But with respect to the choice set invariance properties — WARP, con
sistency and path-independence — the performance of Copeland's method is 
equally unimpressive as that of the maximin method and the parliamentary 
voting procedure. None o f these satisfies any of the criteria mentioned. As 
I have shown elsewhere the best-known multi-stage procedures — the plurality 
runoff, Nanson's Borda elimination, the preferential voting methods of Hare 
and Coombs as well as Black's method — are not superior to Copeland's pro
cedure. As a matter of fact, Copeland's method dominates all of them except 
Black's method when the Condorcet-criteria, monotonicity, Pareto-optimality, 
WARP, path-independence and consistency are considered (Nurmi 1983; see 
also Richelson 1979 and Straffin 1981). Therefore, if one is interested in 
the rationality criteria — i.e. monotonicity and Pareto-optimality — and
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choice set invariance criteria, one should look at one-stage procedures.
One-stage procedures are based on a simultaneous consideration of all the 

alternatives. Perhaps the most common of these procedures is the plurality 
principle. The Borda count and the approval voting are also pretty well- 
known. The former was introduced roughly two centuries ago by Jean-Char/es 
de Borda (see deGrazia 1953) and the latter recently by Brams and Fishburn 
(1978; 1981). It turns out that neither the plurality procedure nor the Borda 
count satisfy WARP. On the other hand, the Borda count never chooses a 
Condorcet-loser, whereas the plurality method does not necessarily exclude 
such a choice. The best buy in terms of the choice set invariance criteria 
would, however, be approval voting: it dominates — with respect to these 
criteria — both the plurality procedure and the Borda count. Moreover, it 
dominates ail the procedures mentioned above as far as these criteria are 
concerned. This is because approval voting is path-independent and consistent 
and satisfies WARP. Moreover, it is monotonic and in a sense Pareto-optimal 
(Nurmi 1983). However, it fails on both Condorcet criteria; in other words, it 
does not necessarily choose the Condorcet-winner when one exists and can 
choose the Condorcet-loser when one exists.

THE PROBLEM OF STRATEGY  

Manipulability

As was pointed out above, the theorem independently proven by Gibbard 
(1973) and Satterthwaite (1975) states that when the number of alternatives 
is at least three all non-trivial resolute social choice functions are either 
manipulable or dictatorial. The resolute social choice functions are character
ized by the property that their range is a set consisting of single alternatives 
only, i.e. no ties can result from resolute social choice procedures. Now if we 
consider those voting procedures that have done reasonably well in the light 
of Condorcet's, rationality and choice set invariance criteria — i.e. Copeland's 
and Black's methods along with the Borda count and approval voting — we 
notice that none of them is resolute. In other words, ties o f two or more 
alternatives can result from each of them. Hence, the Gibbard-Satterthwaite 
theorem is not directly applicable. Let us now focus on the manipulability 
of the most promising voting procedures or — to be more exact — on the 
manipulability of the choice functions which these procedures realize.

Copeland's procedure is manipulable as can be seen from the following 
sincere preference profile:
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1 person 2 persons 1 person 1 person

X z y y
w X w z
y w X w
z y z X

The Copeland scores are x:1, y :— 1, z:1 and w:— 1. Hence, the result is a tie 
between x and z. Now if the person whose least preferred alternative is x 
insincerely indicates that his/her preference ordering is zywx, the Copeland 
scores change: x gets 1, y —3, z 3 and w —1. The winner is now z. Hence by 
misrevelation of his/her true preference the person is able to bring about an 
outcome that he/she prefers different to the one resulting from the revelation 
of his/her true preferences.

Now when saying that z is preferred to a tie between x and z by the person 
in question, we are making an assumption that is a milder version of the 
monotonicity in prizes o f Harsanyi (1977, 33). The latter states that if A is 
preferred to B, then the lottery (A, p; C, 1—p) is preferred to the lottery 
(B, p; C, 1—p) where 0 <  p <  1. ((A, p; C, 1—p) denotes the lottery in which 
the probability of prize A is p and the probability of prize C is 1—p). As a 
matter of fact we are committing ourselves to a milder assumption, viz. that 
A is preferred to the lottery (A, p; B, 1— p) when A is preferred to B. To 
apply this assumption to our case, we just let A = z and B = x.

As for the manipulability of the Borda count, there is some anecdotal 
evidence that J.-C. de Borda himself was aware of this weakness of his method 
(Mascart 1919, 130). An example w ill show that the Borda count is indeed 
manipulable. Consider the following profile of true preferences:

1 2 3
x y z
y z x
v v y
z x v

Here the numbers identify persons. The Borda scores using de Borda's original 
scoring, i.e. 4 points for the first rank, 3 for the second etc., are as follows: 
x 8, y 9, z 8 and v 5. The winner is thus y. Person 3 can misrepresent his/her 
preferences as xvzy and change the scores as follows: x gets now 9, y 8, z 6 
and v 7 points. Now x wins. Person 3 prefers x to y and thus the procedure is 
not strategy-proof.

Turning now to Black's method, we notice first that in the previous 
example there is no Condorcet winner. Therefore, Black's method chooses
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the Borda winner y. Now by misrepresenting his/her preferences again as 
xvzy, person 3 renders x the Condorcet winner. Black's method then chooses 
x which is preferred to y by person 3 as we noticed. This shows that Black's 
method is also manipulable.

So is approval voting. This is so because the plurality method, a special 
case of approval voting, is manipulable. Consider the following example.

2 persons 3 persons 2 persons

X y z
y z X

z X y

If everyone votes according to his/her true preferences and the plurality 
method is used, the winner is obviously y. This alternative is the worst one 
for the two persons on the right. By voting as if his/her true preference were 
xzy, one of these two persons can create a tie between x and y. By the prin
ciple of monotonicity in prizes, a tie is preferred to y by the person in quest
ion. Hence, the plurality method is manipulable. The same example shows 
also that the approval voting is manipulable if each voter approves one 
alternative only.

Truncation o f Preferences

None of the most promising voting procedures thus turns out to be strategy- 
proof. Indeed, all of them are manipulable by some individual in some 
situation. A fortio ri they are also manipulable by coalitions o f voters. Let us 
now focus on another type of manipulability which has received relatively 
slight attention, viz. the truncation of preferences (Brams 1982a; Fishburn & 
Brams 1983). Brams shows that one fairly common type of preferential 
voting, viz. Hare's method, is vulnerable to the truncation of preferences. In 
other words, a voter can sometimes benefit from not indicating any prefer
ence at all for some alternatives. In all voting systems which utilize the 
preference orderings of voters as inputs this kind of strategic behaviour is 
relevant. All the methods discussed in previous section can be implemented 
by using preferences as input data. Therefore, the truncation of preferences 
deserves some consideration.

Copeland's procedure is vulnerable to »the truncation paradox», i.e. a voter 
may benefit from  not revealing any preference at all fo r some alternatives. 
Since we are dealing with preference order inputs, we assume that the trunca
tion of preferences means that the voter gives the order of his/her most
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preferred alternatives only and indicates no preference with respect to others. 
This means that if x and y both belong to the »indifference set» of voter i, the 
preferences of other not indifferent voters determines whether x beats y. On 
the other hand, if only x belongs to i's indifference set, then obviously i's 
preference of y over x is taken into account. Let us now take a look at the 
following example.

1 person 2 persons 1 person 2 persons
X z y y
w X w z
y w X w
z y z X

The Copeland scores are then: x —1, y 1, z 1 and w —1. Hence there is a tie 
between y and z. Obviously the result does not please the left-most person 
very much. He/she can do better, however, by truncating his/her preferences 
so that only x is indicated as the most preferred alternative. The new scores 
are then: x— 1, y 2, z 1 and w —2. Now y, which is preferred to the z-y tie by 
the person in question according to the monotonicity in prizes principle, wins. 
Incidentally, if two alternatives would be chosen by Copeland's method the 
benefit from truncation would be even more marked: in the sincere case y 
and z, i.e. the least-preferred alternatives of the left-most person, would be 
chosen. On the other hand, if the person gives the above truncated prefer
ence only, x and y would be chosen. Notice that x is the most-preferred 
alternative of the person in question.

Now, the Borda count is obviously vulnerable to the truncation of prefer
ences if the voter is allowed to give his/her Borda scores to the most-preferred 
alternatives only and to give the score zero to the others, provided that 
the scores range from 0 to n—1 where n is the number of alternatives. The 
following case shows that the Borda count has this drawback.

1 2 3

X z y

y y z
z w w
w X X

Assuming that the available scores are 0, 1, 2 and 3, the result is: x 3, y 7, z 6 
and w 2. If now person 2 decides to truncate his/her preferences so as to give 
z 3 points and zero points to the other alternatives, the new Borda scores 
become: x 3, y 5, z 6 and w 1. Now z, person 2's most-preferred alternative, 
wins. One could object that this notion of truncation is different from the



99

previous one in doing more than just assigning the same score to all alter
natives for which the preferences are truncated, viz. in fact treating all these 
alternatives as the least preferred ones. Perhaps a more plausible interpretation 
of preference truncation would be to assign the median Borda score to all 
alternatives in the indifference set. A glance at the previous example reveals 
that even so the Borda count is vulnerable to the truncation paradox. If now 
person 2 again truncates his/her preferences as above, he/she assigns 1 point 
to y, w and x. The new scores now are: x 4, y 6, z 6 and w 2. Obviously the 
y-z tie is preferred to y by person 2.

Black's method also has this drawback. This can be seen from  the previous 
example. Since y is the Condorcet winner it is chosen by Black's method. If 
person 2 truncates his/her preferences in the fashion described above, y is no 
more the Condorcet winner. Thus the procedure chooses the Borda winner 
and the result is a y-z tie as was pointed out above.

The truncation of preferences has to be given yet another interpretation 
when approval voting is considered. It would be natural to say that a voter 
truncates his/her preferences whenever he/she votes for a most-preferred 
proper subset of those alternatives that he/she approves. Let us consider 
again an example.

1 2 3
a a b
b b c
c c a

Voters 1 and 2 have identical preferences over X = j  a, b, c  ̂ . Assume now 
that they both approve a and b. If they vote accordingly and voter 3 approves 
b only, the result is that b w ill be chosen. If voters 1 and 2 truncate their 
preferences so as to vote for a only the behaviour of voter 3 remaining the 
same as previously, the alternative a wins. Alternatively, one could show that 
one o f the voters 1 and 2 could create an a-b tie by truncating his/her prefer
ences. Both cases show that approval voting is also subject to the truncation 
paradox.

Strategic Information

A ll democratic voting systems aim at finding out the preferences of the 
voters. If a system is manipulable, there is no assurance that true preferences 
are revealed. A modern and nowadays quite routine feature of political life, 
opinion polls, presents yet another challenge to the voting systems. As Brams
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(1982) points out, the polls create in effect a runoff system even when the 
voting system formally is a one-stage procedure. A person whose first prefer
ence has a poor showing at the polls is likely to misrepresent his/her prefer
ences so as to help the election of the alternative that he/she most prefers 
among the »feasible» ones. The problem we now address ourselves to is the 
following: how is the poll information likely to affect the preference revel
ation in Copeland's, Black's and Borda's methods as well as in approval voting?

Quite obviously the poll information calls fo r similar strategic modific
ations of the true preferences in Copeland's, Black's and Borda's systems so 
that the most-preferred »feasible» alternative is ranked first, while the least- 
preferred of the feasible ones is ranked last, provided that the poll informa
tion indicates a fa irly close race between the two alternatives. With this 
modification the voter can be sure of guaranteeing as many victories and as 
few losses fo r his/her most-preferred alternatives as he/she possibly can in 
pairwise comparison when Copeland's procedure is used. The same modific
ation guarantees the smallest possible number of victories and the largest 
number o f losses to the least-preferred feasible alternative.

When the Borda count is used these modifications lead to the largest 
(smallest, respectively) Borda score to the most-preferred (least-preferred) 
feasible alternative that the voter can possibly give.

It has been known for two centuries that the Condorcet winner may not 
be one of the two alternatives that have the best showing at the polls (if the 
first preferences only are focused upon). Hence the fact that there is a Con
dorcet winner does not diminish the possibilities of similar strategic modific
ations as above. As Black's method chooses the Borda winner when no Con
dorcet winner exists, we notice that the same kind of strategic modifications 
can be made when Black's procedure is resorted to.

Approval voting is also sensitive to poll information. In this case, however, 
the modification called for is of a different nature (Brams 1982): all one 
needs to do is to contract or expand the set of approved alternatives so that 
the more preferred one of the poll-favourites is in the approved set, while the 
other one is not. The difference between this modification and the ones 
discussed earlier in this section is interesting: while the latter necessarily 
require insincerity in preference revelation, the former (i.e. the modification 
in approval voting) does not. That is, a voter can still vote for all the alter
natives that he/she prefers to the best feasible alternative. His/her preference 
ordering may remain the same, while the »boundary» between the approved 
and disapproved alternatives changes due to the strategic utilization of the 
poll information.
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CONCLUDING DISCUSSION

Could one then on the basis of the preceding analysis make practical 
recommendations concerning the optimal voting system? The answer depends 
on the view one has of the relevance of the criteria in the light of which the 
voting systems have been evaluated. Moreover, one has to bear in mind that 
not all voting systems have been discussed. But with these reservations in 
mind it seems pertinent to look at the implementation problematique of the 
most promising voting systems we have touched upon.

In their recent work Bramsand Fishburn (1978; 1983) have made a strong 
case for approval voting. Indeed, the rationality and choice set invariance 
criteria speak clearly in favour of this voting system. Also the possibilities for 
strategic manipulation are fewer in approval voting than in plurality or plural
ity runoff methods both of which are widely used in group decision making. 
There is, however, a serious drawback in approval voting, viz. the fact that it 
does not necessarily choose the Condorcet winner when one exists even when 
everyone votes according to his/her true preferences. Moreover, the method 
can choose the Condorcet loser when one exists. In this latter respect approval 
voting does worse than the plurality runoff which can never choose the 
Condorcet loser. With respect to the Condorcet winner criterion all three 
— approval voting, plurality and plurality runoff methods — do equally badly.

When compared with the more promising voting methods — Copeland's, 
Black's and Borda's — the performance of approval voting is still impressive as 
far as the rationality and choice set invariance criteria are concerned. We 
noticed in the preceding that approval voting fares similarly as the above 
three voting procedures in terms of manipulability, truncation paradox and 
strategic information induced preference modifications. However, when it 
comes to the Condorcet criteria — winner or loser — each one of the three 
systems satisfies at least one of them. Indeed, Copeland's method satisfies 
both. Approval voting, as we noticed, is consistent w ith neither of the Con
dorcet criteria.

The recommendations ensuing from  this analysis are twofold
(1) if the emphasis is on the Condorcet criteria and the choice set invariance 

criteria are given secondary importance only, then Copeland's method 
would seem optimal, and

(2) if all criteria are deemed equally important, then the approval voting 
should be chosen.

One might, of course, try  to combine the nice properties of various pro
cedures in an effort to design an optimal voting method. It turns out, how
ever, that the »hybrid» procedure may have properties that its constituents do
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not have and vice versa. Indeed, it can happen that even when the hybrid 
procedure consists of repeated applications of a given constituent procedure, 
it has different properties than the constituent method. A case in point is 
Nanson's Borda elimination procedure which satisfies the Condorcet winning 
criterion while the Borda count,does not satisfy it. The reason is obviously 
that in Nanson's procedure the Borda scores are used eliminatively while in 
Borda count they are used to determine the winners.

Similarly when different procedures are combined we might get somewhat 
counterintuitive results. One might, fo r example, wish to strengthen one weak 
point of the approval voting, viz. the Condorcet winning criterion by con
structing a method which necessarily chooses the Condorcet winner when one 
exists. However, if one combines the approval voting with this criterion, the 
resulting hybrid method does not have WARP any more (even though the 
approval voting has it). The following Condorcet cycle illustrates this:

person 1 person 2 person 3

X y z

y z X

z X y

Suppose that each person approves his/her first preference only. Hence as 
there is no Condorcet winner, there is a tie between x, y and z. Consider now 
the subset jx ,  yj* of alternatives. In this subset there is a Condorcet winner, 
viz. x. As WARP requires that each alternative which is among the winners in 
a set of alternatives, should be among the winners in every subset to which 
it belongs, we see that WARP is violated.

The same example can also be used to show that the hybrid procedure 
fails to satisfy path-independence. If we first determine the winners in the 
subset consisting of x and y, the winner is x. Considering then the set jx , z j- 
we notice that z wins. If the entire set is considered, the winners are x, y and 
z. Hence, the procedure is not path-independent either.

Also consistency property vanishes in the hybrid method. Consider the 
following case:

1 2 3 4 persons 5 persons 2 persons

X z y X z y

Group N: y X z Group N': z X X

z y X y y  z

Assuming again that in each group every person approves only his/her first 
ranked alternative, there is a tie between x, y and z in N, while x is the Con
dorcet winner in N'. In NUN' there is no Condorcet winner. Therefore, the
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approval voting is applied with the result that z is the winner. Clearly the 
procedure is inconsistent.

These two properties are sufficient to show that combining two methods 
with intuitively desirable properties may result in a genuinely new method. 
Whether the new method possesses the properties of its constituents is a 
contingent matter to be determined in casu.
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